Skip to main content

Correspondence between quasinormal modes and the shadow radius in a wormhole spacetime

Abstract

In this paper we study the correspondence between the real part of quasinormal modes and the shadow radius in a wormhole spacetime. Firstly we consider the above correspondence in a static and spherically symmetric wormhole spacetime and then explore this correspondence numerically by considering different wormhole models having specific redshift functions. To this end, we generalize this correspondence to the rotation wormhole spacetime and calculate the typical shadow radius of the rotating wormhole when viewed from the equatorial plane. We argue that due to the rotation and depending on the specific model, the typical shadow radius can increase or decrease and a reflecting point exists. Finally, we discuss whether a wormhole can mimic the black hole due to it’s shadow. In the light of the EHT data, we find the upper and lower limits of the wormhole throat radius in the galactic center M87.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Flamm, L.: Phys. Z. 17, 448 (1916)

    Google Scholar 

  2. 2.

    Einstein, A., Rosen, N.: Phys. Rev. 48, 73–77 (1935)

    ADS  Article  Google Scholar 

  3. 3.

    Wheeler, J.A.: Phys. Rev. 97, 511 (1955)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Fuller, R.W., Wheeler, J.A.: Phys. Rev. 128, 919 (1962)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Morris, M.S., Thorne, K.S.: Am. J. Phys. 56, 395 (1988)

    ADS  Article  Google Scholar 

  6. 6.

    Morris, M.S., Thorne, K.S., Yurtsever, U.: Phys. Rev. D 61, 1446 (1988)

    ADS  Google Scholar 

  7. 7.

    Teo, Edward: Phys. Rev. D 58, 024014 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. American Institute of Physics, New York (1995)

    Google Scholar 

  9. 9.

    Ellis, H.. G..: J. Math. Phys. 14, 104 (1973)

    ADS  Article  Google Scholar 

  10. 10.

    Chetouani, L., Clement, G.: Gen. Rel. Grav. 16, 111–119 (1984)

    ADS  Article  Google Scholar 

  11. 11.

    Tsukamoto, N., Harada, T.: Phys. Rev. D 95, 024030 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Nakajima, K.: H. Asada and Phys. Rev. D 85, 107501 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    Bhattachary, A., Potapov, A.: Mod. Phys. Lett. A 25, 2399 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Abe, F.: ApJ 725, 787–793 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    Dey, T.K., Sen, S.: Mod. Phys. Lett. A 23, 953–962 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    Shaikh, R., Kar, S.: Phys. Rev. D 96(4), 044037 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Jusufi, K.: Int. J. Geom. Methods Mod. Phys. 14, 1750179 (2017)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Dai, D.C., Stojkovic, D.: Phys. Rev. D 100(8), 083513 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Simonetti, J.H., Kavic, M.J., Minic, D., Stojkovic, D., Dai, D.C.: [arXiv:2007.12184 [gr-qc]]

  20. 20.

    Synge, J.L.: Mon. Not. Roy. Astron. Soc. 131(3), 463 (1966)

    ADS  Article  Google Scholar 

  21. 21.

    Luminet, J.-P.: Astron. Astrophys. 75, 228 (1979)

    ADS  Google Scholar 

  22. 22.

    Bardeen, J.M.: in Black Holes (Proceedings, Ecole d’Eté de Physique Théorique: Les Astres Occlus : Les Houches, France, August, 1972) edited by C. DeWitt and B. S. DeWitt

  23. 23.

    Bambi, C.: Phys. Rev. D 87, 107501 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    Ohgami, T., Sakai, N.: Wormhole shadows. Phys. Rev. D 91, 124020 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Nedkova, P.G., Tinchev, V., Yazadjiev, S.S.: Phys. Rev. D 88, 124019 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    Shaikh, R.: Phys. Rev. D 98(2), 024044 (2018). [arXiv:1803.11422 [gr-qc]]

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Gyulchev, G., Nedkova, P., Tinchev, V., Yazadjiev, S.: Eur. Phys. J. C 78(7), 544 (2018). [arXiv:1805.11591 [gr-qc]]

    ADS  Article  Google Scholar 

  28. 28.

    Amir, M., Jusufi, K., Banerjee, A., Hansraj, S.: Class. Quant. Grav. 36(21), 215007 (2019). [arXiv:1806.07782 [gr-qc]]

    ADS  Article  Google Scholar 

  29. 29.

    Akiyama, K., et al.: Event Horizon Telescope. Astrophys. J. 875, L1 (2019)

    ADS  Article  Google Scholar 

  30. 30.

    Akiyama, K., et al.: Event horizon telescope. Astrophys. J. 875, L4 (2019)

    ADS  Article  Google Scholar 

  31. 31.

    Berti, E., Cardoso, V., Will, C.: Phys. Rev. D 73, 064030 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Regge, T., Wheeler, J.A.: Phys. Rev. 108, 1063 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Zerilli, F.J.: Phys. Rev. D 2, 2141 (1970)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Berti, E., Kokkotas, K.D.: Phys. Rev. D 71, 124008 (2005). [gr-qc/0502065]

  35. 35.

    Mashhoon, B.: Phys. Rev. D 31, 290 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Konoplya, R.A., Zhidenko, A.: Rev. Mod. Phys. 83, 793 (2011)

    ADS  Article  Google Scholar 

  37. 37.

    Ferrari, V., Mashhoon, B.: Phys. Rev. D 30, 295 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    Schutz, B.F., Will, C.M.: Astrophys. J. Lett. 291, L33 (1985)

    ADS  Article  Google Scholar 

  39. 39.

    Iyer, S., Will, C.M.: Phys. Rev. D 35, 3621 (1987)

    ADS  Article  Google Scholar 

  40. 40.

    Konoplya, R.A.: Phys. Rev. D 68, 024018 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    Konoplya, R.A.: Phys. Lett. B 784, 43 (2018). [arXiv:1805.04718 [gr-qc]]

    ADS  Article  Google Scholar 

  42. 42.

    Churilova, M.S., Konoplya, R.A., Zhidenko, A.: Phys. Lett. B 802, 135207 (2020). [arXiv:1911.05246 [gr-qc]]

    MathSciNet  Article  Google Scholar 

  43. 43.

    Oliveira, R., Dantas, D.M., Santos, V., Almeida, C.A.S.: Class. Quant. Grav. 36(10), 105013 (2019). [arXiv:1812.01798 [gr-qc]]

    ADS  Article  Google Scholar 

  44. 44.

    Abbott, B.P., et al.: LIGO Scientific and Virgo Collaborations. Phys. Rev. Lett. 116, 061102 (2016)

  45. 45.

    Dent, J.B., Gabella, W.E., Holley-Bockelmann, K., Kephart, T.W.: [arXiv:2007.09135 [gr-qc]]

  46. 46.

    Cardoso, V., Miranda, A.S., Berti, E., Witek, H., Zanchin, V.T.: Phys. Rev. D 79, 064016 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    Hod, S.: Phys. Lett. B 727, 345 (2013)

    ADS  Article  Google Scholar 

  48. 48.

    Wei, S.W., Liu, Y.X.: arXiv:1909.11911 [gr-qc]

  49. 49.

    Stefanov, I.Z., Yazadjiev, S.S., Gyulchev, G.G.: Phys. Rev. Lett. 104, 251103 (2010)

    ADS  Article  Google Scholar 

  50. 50.

    Konoplya, R.A., Stuchlík, Z.: Phys. Lett. B 771, 597 (2017)

    ADS  Article  Google Scholar 

  51. 51.

    Jusufi, K.: Phys. Rev. D 101, 084055 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    Jusufi, K.: Phys. Rev. D 101, 124063 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  53. 53.

    Liu, C., Zhu, T., Wu, Q., Jusufi, K., Jamil, M., Azreg-Aïnou, M., Wang, A.: Phys. Rev. D 101(8), 084001 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  54. 54.

    Hendi, S.H., Sajadi, S.N., Khademi, M.: arXiv:2006.11575 [gr-qc]

  55. 55.

    Cuadros-Melgar, B., Fontana, R.D.B., de Oliveira, J.: [arXiv:2005.09761 [gr-qc]]

  56. 56.

    Guo, Y., Miao, Y.G.: [arXiv:2007.08227 [hep-th]]

  57. 57.

    Feng, X.H., Lu, H.: arXiv:1911.12368 [gr-qc]

  58. 58.

    Allahyari, A., Khodadi, M., Vagnozzi, S., Mota, D.F.: JCAP 02, 003 (2020). [arXiv:1912.08231 [gr-qc]]

    ADS  Article  Google Scholar 

  59. 59.

    Khodadi, M., Allahyari, A., Vagnozzi, S., Mota, D.F.: [arXiv:2005.05992 [gr-qc]]

  60. 60.

    Bronnikov, K.A., Baleevskikh, K.A.: Grav. Cosmol. 25(1), 44–49 (2019)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kimet Jusufi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jusufi, K. Correspondence between quasinormal modes and the shadow radius in a wormhole spacetime. Gen Relativ Gravit 53, 87 (2021). https://doi.org/10.1007/s10714-021-02856-6

Download citation

Keywords

  • Quasinormal modes
  • Shadow
  • Wormholes