Skip to main content

Thermodynamics of a static electric-magnetic black hole in Einstein-Born-Infeld-AdS theory with different horizon geometries

Abstract

We consider black hole solutions with electric and magnetic sources in the four-dimensional Einstein-Born-Infeld-AdS theory with spherical, planar and hyperbolic horizon geometries. Exact analytical solutions for the metric function, electric and magnetic fields were obtained and they recover the RN-AdS black hole in the limit \(\beta \rightarrow +\infty \) for spherical horizon in the absence of the magnetic charge. Expressions for temperature, electric and magnetic potential were obtained and they satisfy the first law of the extended black hole thermodynamics, where a negative cosmological constant is associated with thermodynamic pressure. Also, the Born-Infeld vacuum polarization term \(Bd\beta \) was included into the first law in order to satisfy the Smarr relation. Critical behavior of the black hole was examined and condition on electric and magnetic charges were obtained when phase transition appears. Also, the critical ratio and capacity at constant pressure were calculated. Electric and magnetic charges enter into the metric function and thermodynamic quantities symmetrically and thus the presence of the magnetic charge does not bring very significant new features. Finally, we examine the Joule-Thomson expansion if the black hole mass is fixed. The inversion and isenthalpic curves were plotted and the cooling and heating regions were demonstrated. These results recover the Joule-Thomson expansion recently considered for the RN-AdS black hole in the corresponding limit.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Kastor, D., Ray, S., Traschen, J.: Class. Quantum Grav. 26, 258 (2009)

    Article  Google Scholar 

  2. 2.

    Dolan, B.P.: Class. Quantum Grav. 28, 125020 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    Dolan, B.P.: Class. Quantum Grav. 28, 235017 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    Sekiwa, Y.: Phys. Rev. D 73, 084009 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Cvetič, M., Gibbons, G.W., Kubizňák, D., Pope, C.N.: Rhys. Rev. D 84, 024037 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    Kubizňák, D., Mann, R.B., Teo, M.: Class. Quantum Grav. 34, 063001 (2017)

    ADS  Article  Google Scholar 

  7. 7.

    Kubizňák, D., Mann, R.B.: J. High Energ. Phys. 07, 033 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    Altamirano, N., Kubizňák, D., Mann, R.B., Sherkatghanad, Z.: Galaxies 2, 89 (2014)

    ADS  Article  Google Scholar 

  9. 9.

    Aydıner, E., Okcu, O.: Eur. Phys. J. C 77, 24 (2017)

    ADS  Article  Google Scholar 

  10. 10.

    Jie-Xiong, M., Gu-Qiang, L., Shan-Quan, L., Xiao-Bao, X.: Phys. Rev. D 98, 124032 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Cisterna, A., Shi-Qian, H., Xiao-Mei, K.: Phys. Lett. B 797, 134883 (2019)

  12. 12.

    Bi, S., Du, M., Tao, J., Yao, F.: Chin. Phys. C 45, 025109 (2021)

    ADS  Article  Google Scholar 

  13. 13.

    Mazharimousavi, S.H., Halilsoy, M., Gurtug, O.: Eur. Phys. J. C 74, 2735 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    Hassaïne, M., Martínez, C.: Phys. Rev. D 75, 027502 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Hassaïne, M., Martínez, C.: Class. Quantum Grav. 25, 195023 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    Hendi, S.H.: Prog. Theor. Phys. 124, 493 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    Panotopoulos, G., Rincón, Á.: Int. J. Mod. Phys. D 28, 1950016 (2019)

    ADS  Article  Google Scholar 

  18. 18.

    Tataryn, M.B., Stetsko, M.M.: Int. J. Mod. Phys. D 29, 2050111 (2020)

    ADS  Article  Google Scholar 

  19. 19.

    Gonzalez, H.A., Hassaïne, M., Martinez, C.: Phys. Rev. D 80, 104008 (2009)

    ADS  Article  Google Scholar 

  20. 20.

    Born, M., Infeld, L.: Proc. Roy. Soc. Lond. A 144, 425 (1934)

    ADS  Article  Google Scholar 

  21. 21.

    Fernando, S., Krug, D.: Gen. Relativ. Gravit. 35, 129 (2003)

    ADS  Article  Google Scholar 

  22. 22.

    Banerjee, R., Roychowdhury, D.: Phys. Rev. D 85, 044040 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    Banerjee, R., Roychowdhury, D.: Phys. Rev. D 85, 104043 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    Li, S., Lü, H., Wei, H.: J. High Energ. Phys. 07, 004 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    Myung, Y.S., Yong-Wan, K., Young-Jai, P.: Phys. Rev. D 78, 084002 (2008)

  26. 26.

    Dey, T.K.: Phys. Lett. B 595, 484 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Rong-Gen, C., Da-Wei, P., Wang, A.: Phys. Rev. D 70, 124034 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28.

    Mišković, O., Olea, R.: Phys Rev. D 77, 124048 (2008)

    ADS  Article  Google Scholar 

  29. 29.

    Yi-Huan, W.: Chin. Phys. B 19, 090404 (2010)

    Article  Google Scholar 

  30. 30.

    Gunasekaran, S., Kubizňák, D., Mann, R.B.: J. High Energ. Phys. 11, 110 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    De-Cheng, Z., Shao-Jun, Z., Wang, B.: Phys. Rev. D 89, 044002 (2014)

    ADS  Article  Google Scholar 

  32. 32.

    Bretón, N., Clark, T., Fernando, S.: Int. J. Mod. Phys. D 26, 1750112 (2017)

    ADS  Article  Google Scholar 

  33. 33.

    Hendi, S.H., Allahverdizadeh, M.: Adv. High Energy Phys. 390101, 390101 (2014)

    Google Scholar 

  34. 34.

    Sheykhi, A., Hajkhalili, S.: Phys. Rev. D 89, 104019 (2014)

    ADS  Article  Google Scholar 

  35. 35.

    Hendi, S.H., Panahiyan, S., Panah, B.E.: Int. J. Mod. Phys. D 25, 1650010 (2016)

    ADS  Article  Google Scholar 

  36. 36.

    Tataryn, M.B., Stetsko, M.M.: Int. J. Mod. Phys. D 28, 1950160 (2019)

    ADS  Article  Google Scholar 

  37. 37.

    Jiménez, J.B., Heisenberg, L., Olmo, G.J., Rubiera-Garcia, D.: Phys. Rep. 727, 1 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    Gaete, P., Helayël-Neto, J.A.: Eur. Phys. Lett. 119, 51001 (2017)

    ADS  Article  Google Scholar 

  39. 39.

    Kruglov, S.I.: Int. J. Geom. Methods Mod. Phys. 12, 1550073 (2015)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Shapere, A.D., Trivedi, S., Wilczek, F.: Mod. Phys. Lett. A 6, 2677 (1991)

    ADS  Article  Google Scholar 

  41. 41.

    Sen, A.: Nucl. Phys. B 404, 109 (1993)

    ADS  Article  Google Scholar 

  42. 42.

    Chamseddine, A.H., Sabra, W.A.: Phys. Lett. B 485, 301 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Hartnoll, S.A., Kovtun, P.K.: Phys. Rev. D 76, 066001 (2007)

    ADS  Article  Google Scholar 

  44. 44.

    Hartnoll, S.A., Kovtun, P.K., Muller, M., Sachdev, S.: Phys. Rev. B 76, 144502 (2007)

    ADS  Article  Google Scholar 

  45. 45.

    Albash, T., Johnson, C.V.: J. High Energ. Phys. 09, 121 (2008)

    ADS  Article  Google Scholar 

  46. 46.

    Wirschins, M., Sood, A., Kunz, J.: Phys. Rev. D 63, 084002 (2001)

    ADS  Article  Google Scholar 

  47. 47.

    Lü, H., Pang, Y., Pope, C.N.: J. High Energ. Phys. 11, 033 (2013)

    ADS  Article  Google Scholar 

  48. 48.

    Dutta, S., Jain, A., Soni, R.: J. High Energ. Phys. 12, 060 (2013)

    ADS  Article  Google Scholar 

  49. 49.

    Eiroa, E.F.: Phys. Rev. D 73, 043002 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  50. 50.

    Gibbons, G.W., Rasheed, D.A.: Nucl. Phys. B 454, 185 (1995)

    ADS  Article  Google Scholar 

  51. 51.

    Stefanov, IZh, Yazadjiev, S.S., Todorov, M.D.: Phys. Rev. D 75, 084036 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    Chemissany, W.A., Mees de Roo, S.: Class Quantum Grav. 25, 225009 (2008)

  53. 53.

    Kruglov, S.I.: Ann. Phys. 383, 550 (2017)

    ADS  Article  Google Scholar 

  54. 54.

    Kruglov, S.I.: Gen. Relativ. Gravit. 51, 121 (2019)

    ADS  Article  Google Scholar 

  55. 55.

    Meng, K., Cao, L., Zhao, J., Zhou, T., Qin, F., Deng, M.: Phys. Lett. B 819, 136420 (2021)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. B. Tataryn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Graphs on the Fig. 5 illustrate solutions of the first equation of the system (24) and also Eq. (35) depending on parameter \(\beta \) for various other parameters. Graphs on the Fig. 6 demonstrate the dependence of the critical ratio (29) on parameters \(\beta \) and charges \(q_e\), \(q_m\).

Fig. 5
figure5

For all graphs \(q_m=0\), \(q_e=0.5,1,1.5\) (solid lines from bottom to top). Dashed lines show the RN-AdS case. Dotted lines show the equality case of (25) and the region of two real positive roots for (a) and the equality case of (36) for (b), (c)

Fig. 6
figure6

Here q stands for \(\sqrt{q_e^2+q_m^2}\). These two identical graphs demonstrate, that the critical ratio (29) depends only on the combination \(\beta q\). On the graph a solid curves correspond to \(q_1=0.5\), \(q_2=1\), \(q_3=2\) from bottom to top. The horizontal dashed line denotes the RN-AdS limit, namely 3/8. Vertical lines correspond to \(\beta _1=4\), \(\beta _2=2\), \(\beta _3=1\) from right to left. The horizontal dotted line crosses the solid curves in points where \(\beta _1q_1=\beta _2q_2=\beta _3q_3=2\). Parameters on the graph (b) correspond to the ones on the graph (a) by replacing \(\beta \rightarrow q\), \(q\rightarrow \beta \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tataryn, M.B., Stetsko, M.M. Thermodynamics of a static electric-magnetic black hole in Einstein-Born-Infeld-AdS theory with different horizon geometries. Gen Relativ Gravit 53, 72 (2021). https://doi.org/10.1007/s10714-021-02842-y

Download citation

Keywords

  • Einstein-Born-Infeld theory
  • black hole thermodynamics
  • Joule-Thomson expansion