Skip to main content

Geometry of Vaidya spacetimes

Abstract

We investigate the geometrical structure of Vaidya’s spacetime in the case of a white hole with decreasing mass, stabilising to a black hole in finite or infinite time or evaporating completely. Our approach relies on a detailed analysis of the ordinary differential equation describing the incoming principal null geodesics, among which are the generators of the past horizon. We devote special attention to the case of a complete evaporation in infinite time and establish the existence of an asymptotic light-like singularity of the conformal curvature, touching both the past space-like singularity and future time-like infinity. This singularity is present independently of the decay rate of the mass. We derive an explicit formula that relates directly the strength of this null singularity to the asymptotic behaviour of the mass function.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Note that Fayos and Torres [6] also exhibit a null singularity but under slightly different assumptions. The evaporation ends in finite time, therefore the singularity is not asymptotic but well present in the spacetime. Moreover the evaporation is allowed to end brutally: the mass vanishes in finite retarded time with a possibly non-zero slope, in which case it is non-differentiable at its vanishing point.

References

  1. 1.

    Bengtsson, I., Senovilla, J.M.M.: Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Phys. Rev. D 83, 044012 (2011)

    ADS  Article  Google Scholar 

  2. 2.

    Berezin, V.A., Dokuchaev, V.I., Eroshenko, Y.N.: On maximal analytical extension of the Vaidya metric with linear mass function. Class. Quantum Gravity 33(14), 145003 (2016)

    ADS  Article  Google Scholar 

  3. 3.

    Cherubini, C., Bini, D., Capozziello, S., Ruffini, R.: Second order scalar invariants of the Riemann tensor: application to black hole spacetimes. Int. J. Mod. Phys. D 11(6), 827–841 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Booth, I., Martin, J.: On the proximity of black hole horizons: lessons from Vaidya. Phys. Rev. D 82, 124046 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    Fayos, F., Martin-Prats, M.M., Senovilla, J.M.M.: On the extension of Vaidya and Vaidya-Reissner-Nordström spacetimes. Class. Quantum Grav. 12, 2565–2576 (1995)

    ADS  Article  Google Scholar 

  6. 6.

    Fayos, F., Torres, R.: A class of interiors for Vaidya’s radiating metric: singularity-free gravitational collapse. Class. Quantum Grav. 25, 175009 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Gourgoulhon, E., Bejger, M., Mancini, M.: Tensor calculus with open-source software: the SageManifolds project. J. Phys. Conf. Ser. 600, 012002 (2015). https://doi.org/10.1088/1742-6596/600/1/012002

    Article  Google Scholar 

  8. 8.

    Griffiths, J.B., Podolský, J.: Exact Spacetimes in Einstein’s General Relativity. Cambridge monographs on mathematical physics, Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  9. 9.

    Häfner, D., Nicolas, J.-P.: The characteristic Cauchy problem for Dirac fields on curved backgrounds. J. Hyperbolic Differ. Equ. 8(3), 437–483 (2011)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hiscock, W.A.: Models of evaporating black holes. II: Effects of the outgoing created radiation. Phys. Rev. D 23(12), 2823–2827 (1981)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Israel, W.: Gravitational collapse of a radiating star. Phys. Lett. 24A(3), 184–186 (1967)

    ADS  Article  Google Scholar 

  12. 12.

    Penrose, R., Rindler, W.: Spinors and spacetime, Vol. I (1984) and Vol. 2 (1986), Cambridge University Press, Cambridge

  13. 13.

    Petrov, A.Z.: The classification of spaces defining gravitational fields, Scientific Proceedings of Kazan State University (named after V.I. Ulyanov-Lenin), Jubilee (1804–1954) Collection 114 (1954), 8 ,55-69, translation by J. Jezierski and M.A.H. MacCallum, with introduction, by M.A.H. MacCallum, Gen. Rel. Grav. 32 (2000), 1661–1685

  14. 14.

    Teschl, G.: Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, vol. 140. Am. Math. Soc., Providence (2012)

  15. 15.

    Vaidya, P.C.: The external field of a radiating star in general relativity. Current Sci. (India) 12, 183 (1943)

    ADS  MathSciNet  Google Scholar 

  16. 16.

    Vaidya, P.C.: Newtonian time in general relativity. Nature 171, 260–261 (1953)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Nicolas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coudray, A., Nicolas, JP. Geometry of Vaidya spacetimes. Gen Relativ Gravit 53, 73 (2021). https://doi.org/10.1007/s10714-021-02839-7

Download citation

Keywords

  • Black hole
  • White hole
  • Evaporation
  • Vaidya metric
  • Einstein equations with matter
  • Null singularity