Skip to main content

Energy formula for Newman-Unti-Tamburino class of black holes

Abstract

We compute the surface energy (\(\mathcal{E}_{s}^{\pm }\)), the rotational energy (\(\mathcal{E}_{r}^{\pm }\)) and the electromagnetic energy (\(\mathcal{E}_{em}^{\pm }\)) for Newman-Unti-Tamburino (NUT) class of black hole having the event horizon (\(\mathcal{H}^{+}\)) and the Cauchy horizon (\(\mathcal{H}^{-}\)). Remarkably, we find that the mass parameter can be expressed as sum of three energies i.e. \(M=\mathcal{E}_{s}^{\pm }+\mathcal{E}_{r}^{\pm }+\mathcal{E}_{em}^{\pm }\). It has been tested for Taub-NUT black hole, Reissner-Nordström-Taub-NUT black hole, Kerr-Taub-NUT black hole and Kerr-Newman-Taub-NUT black hole. In each case of black hole, we find that the sum of these energies is equal to the Komar mass. It is plausible only due to the introduction of new conserved charges i. e. \(J_{N}=M\,N\) (where \(M=m\) is the Komar mass and \(N=n\) is the gravitomagnetic charge), which is closely analogue to the Kerr-like angular momentum parameter \(J=a\,M\).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Wu, S.Q., Wu, D.: Thermodynamical hairs of the four-dimensional Taub-Newman-Unti-Tamburino spacetimes. Phys. Rev. D 100, 101501(R) (2019)

    MathSciNet  Article  ADS  Google Scholar 

  2. 2.

    Smarr, L.: Mass formula for a Kerr black holes. Phys. Rev. Lett. 30, 71 (1973)

    Article  ADS  Google Scholar 

  3. 3.

    Smarr, L.: Mass formula for a Kerr black holes. Phys. Rev. Lett. 31, 521(E) (1973)

    Article  ADS  Google Scholar 

  4. 4.

    Taub, A.H.: Empty space-times admitting a three parameter group of motions. Ann. Math. 53, 3 (1951)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Misner, C.W.: The Flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space. J. Math. Phys. 4, 924 (1963)

    MathSciNet  Article  ADS  Google Scholar 

  6. 6.

    Newman, E., Tamburino, L., Unti, T.: Empty-space generalization of the Schwarzschild metric. J. Math. Phys. 4, 915 (1963)

    MathSciNet  Article  ADS  Google Scholar 

  7. 7.

    Misner, C.W.: Taub-NUT space as a counter example to almost anything. In Lectures in Applied mathematics (Americal Mathematical Society. Providence 8, 160 (1967)

  8. 8.

    Misner, C.W., Taub, A.H.: A singularity-free empty universe. Sov. Phys. JETP 28, 122 (1969)

    ADS  Google Scholar 

  9. 9.

    Miller, J.G., Kruskal, M.D., Godfrey, B.B.: Taub-NUT (Newman-Unti-Tamburino) metric and incompatible extensions. Phys. Rev. D 4, 2945 (1971)

    MathSciNet  Article  ADS  Google Scholar 

  10. 10.

    Miller, J.G.: Global analysis of the Kerr-Taub-NUT metric. J. Math. Phys. 14, 486 (1973)

    MathSciNet  Article  ADS  Google Scholar 

  11. 11.

    Ramaswamy, S., Sen, A.: Dual-mass in general relativity. J. Math. Phys. 22, 11 (1981)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Ramaswamy, S., Sen, A.: Comment on gravitomagnetic pole and mass quantization. Phys. Rev. Lett. 57, 1088 (1986)

    MathSciNet  Article  ADS  Google Scholar 

  13. 13.

    Lynden-Bell, D., Nouri-Zonoz, M.: Gravitomagnetic lensing by NUT space. Mon. Not. R. Astron. Soc. 292, 714 (1997)

    Article  ADS  Google Scholar 

  14. 14.

    Chakraborty, C., Bhattacharyya, S.: Does the gravitomagnetic monopole exist? A clue from a black hole x-ray binary. Phys. Rev. D 98, 043021 (2018)

    Article  ADS  Google Scholar 

  15. 15.

    Chakraborty, C., Bhattacharyya, S.: Circular orbits in Kerr-Taub-NUT spacetime and their implications for accreting black holes and naked singularities. JCAP 05, 034 (2019)

    MathSciNet  Article  ADS  Google Scholar 

  16. 16.

    Bardeen, J.M., et al.: The Four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    MathSciNet  Article  ADS  Google Scholar 

  17. 17.

    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    MathSciNet  Article  ADS  Google Scholar 

  18. 18.

    Hunter, C.J.: Action of instantons with a nut charge. Phys. Rev. D 59, 024009 (1998)

    MathSciNet  Article  ADS  Google Scholar 

  19. 19.

    Hawking, S.W., Hunter, C.J.: Gravitational entropy and global structure. Phys. Rev. D 59, 044025 (1999)

    MathSciNet  Article  ADS  Google Scholar 

  20. 20.

    Hawking, S.W., Hunter, C.J., Page, D.N.: NUT charge, anti-de Sitter space, and entropy. Phys. Rev. D 59, 044033 (1999)

    MathSciNet  Article  ADS  Google Scholar 

  21. 21.

    Chamblin, A., et al.: Large N phases, gravitational instantons and the nuts and bolts of AdS holography. Phys. Rev. D 59, 064010 (1999)

    MathSciNet  Article  ADS  Google Scholar 

  22. 22.

    Emparan, R., et al.: Surface terms as counterterms in the AdS/CFT correspondence. Phys. Rev. D 60, 104001 (1999)

    MathSciNet  Article  ADS  Google Scholar 

  23. 23.

    Pradhan, P.: Area product and mass formula for Kerr-Newman-Taub-NUT spacetime. Mod. Phys. Lett. A 30, 1550170 (2015)

    MathSciNet  Article  ADS  Google Scholar 

  24. 24.

    Pradhan, P.: Thermodynamic product formula for a Taub-NUT black hole. JETP 122, 113 (2016)

    Article  ADS  Google Scholar 

  25. 25.

    Pradhan, P.: Surface area products for Kerr-Taub-NUT space-time. Euro. Phys. Lett 115, 30003 (2016)

    Article  ADS  Google Scholar 

  26. 26.

    Pradhan, P.: Area (or entropy) products for Newman-Unti-Tamburino class of black holes. Phys. Lett. B 807, 135521 (2020)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Pradhan, P.: Black hole interior mass formula. Euro. Phys. J. C 74, 2887 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parthapratim Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pradhan, P. Energy formula for Newman-Unti-Tamburino class of black holes. Gen Relativ Gravit 53, 69 (2021). https://doi.org/10.1007/s10714-021-02836-w

Download citation

Keywords

  • Surface energy
  • Rotational energy
  • Electromagnetic energy
  • Taub-NUT BH
  • Kerr-Taub-NUT BH