Skip to main content
Log in

Weak gravitational quantum effects in boson particles

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We rewrite the Klein–Gordon equation in an arbitrary space-time transforming it into a generalized Schrödinger equation. Then, we take the weak field limit and show that this equation has certain differences with the traditional Schrödinger equation plus a gravitational field. Thus, this procedure shows that the Schrödinger equation derived in a covariant manner is different from the traditional one. We study the KG equation in a Newtonian space-time to describe the behavior of a scalar particle in an inertial system. This particle is immersed in a gravitational field with the new Schrödinger equation. We study particular physical systems given examples for which we find their energy levels, effective potential and the wave function of the systems. The results contain the gravitational effects due to the curvature of space-time. Finally, we discuss the possibility of the experimental verification of these effects in a laboratory using non-inertial reference frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birrell, N.D., Davies, P.C.W.: Quantum Field in Curved Space, 1st edn. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  2. Matos, T., Guzman, F.S.: Scalar fields as dark matter in spiral galaxies. Class. Quant. Grav. 17, L9–L16 (2000)

    Article  MathSciNet  Google Scholar 

  3. Hui, L., Ostriker, J.P., Tremaine, S., Witten, E.: Ultralight scalars as cosmological dark matter. Phys. Rev. D 95(4), 043541 (2017)

    Article  ADS  Google Scholar 

  4. Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quant. Grav 28, 213001 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. 443, 85–126 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Norte, R.A., Forsch, M., Wallucks, A., Marinković, I., Gröblacher, S.: Platform for measurements of the casimir force between two superconductors. Phys. Rev. Lett. 121, 030405 (2018)

    Article  ADS  Google Scholar 

  7. Bose, S., Mazumdar, A., Morley, G.W., Ulbricht, H., Toroš, M., Paternostroa, M., Geraci, A.A., Barker, P.F., Kim, M.S., Milburn, G.: Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119, 240401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 17, (2014)

  9. Wald, R.M.: General Relativity, 1st edn. The University of Chicago Press, Chicago (1984)

    Book  Google Scholar 

  10. Schutz, B.F.: A First Course in General Relativity, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  11. Dimopoulos, S., Landsberg, G.: Black holes at the large hadron collider. Phys. Rev. Lett. 87, 161602 (2001)

    Article  ADS  Google Scholar 

  12. Lehn, R.D., Chabysheva, S.S., Hiller, J.R.: Klein-gordon equation in curved space-time. Eur. J. Phys. 39, (2018)

  13. Rowan, D.J., Stephenson, G.: Solutions of the time-dependent klein-gordon equation in a schwarzschild background space. J. Phys. A Math. Gen. 9(10), 1631–1635 (1976)

    Article  ADS  Google Scholar 

  14. Matos, T., Avilez, A., Bernal, T., Chavanis, P.-H.: Energy balance of a bose gas in curved spacetime. Gen. Relativ. Gravit. 51(12), 1–23 (2016)

    MATH  Google Scholar 

  15. Chavanis, P.-H., Matos, T.: Covariant theory of Bose-Einstein condensates in curved spacetimes with electromagnetic interactions: the hydrodynamic approach. Eur. Phys. J. Plus 132(1), 30 (2017)

    Article  Google Scholar 

  16. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. 1. WILEY-VCH, New Jersy (2005)

    MATH  Google Scholar 

  17. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. 2. WILEY-VCH, New Jersy (2005)

    MATH  Google Scholar 

  18. Zettili, N.: Quantum Mechanics Concepts and Applications. John Wiley and Sons Ltd, New Jersy (2009)

    Google Scholar 

  19. de la Peña, L.: Introducción a la macánica cuántica. FCE, UNAM (2006)

    Google Scholar 

  20. Matos, T., Urena-Lopez, L.A.: A Further analysis of a cosmological model of quintessence and scalar dark matter. Phys. Rev. D 63, 063506 (2001)

    Article  ADS  Google Scholar 

  21. Armstrong, L.: O(2,1) and the harmonic oscillator radial function. J. Math. Phys. 12(6), 956 (1971)

    Article  ADS  Google Scholar 

  22. Itano, W.M., Monroe, C.R., Meekhof, D.M., Leibfried, B.E.K.D., Wineland, D.J.: Quantum harmonic oscillator state synthesis and analysis. Atom Optics 2995, (1997)

  23. Sugiura, T.: Barrier potential across semiconductor p-n junction and resting membrane potential. Basic Sci. Clin. 27, (2011)

  24. Anandan, J., Suzuki, J.: Quantum Mechanics in a Rotating Frames, 1st edn. Relativity in Rotating Frames (2004)

  25. Chu, S., Bjorkholm, J.E., Ashkin, A., Cable, A.: Experimental observation of optically trapped atom. Phys. Rev. Lett. 57(3), 314 (1986)

    Article  ADS  Google Scholar 

  26. David, C.A., Jason, R.W., Ethan, R.E., Chelsea, D., James, R.K., James, M.K., Norman, E.L., Kamal, O., Robert, F.S., Nan, Y., Robert, J.T.: Observation of Bose-Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CONACyT México under grants CB-2011 No. 166212, CB-2014-01 No. 240512, Project No. 304001, 269652 and Fronteras Project 281; The authors are gratefully for the computing time granted by LANCAD and CONACYT in the Supercomputer Hybrid Cluster “Xiuhcoatl” at GENERAL COORDINATION OF INFORMATION AND COMMUNICATIONS TECHNOLOGIES (CGSTIC) of CINVESTAV. URL: https://clusterhibrido.cinvestav.mx/ and Abacus clusters at Cinvestav, IPN; I0101/131/07 C-234/07 of the Instituto Avanzado de Cosmología (IAC) collaboration (http://www.iac.edu.mx). O.G. acknowledges financial support from CONACyT doctoral fellowship and appreaciates Angelica C. Aguirre Castañón for her valuable review and support. Works of T.M. are partially supported by Conacyt through the Fondo Sectorial de Investigación para la Educación, grant CB-2014-1, No. 240512. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Gallegos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallegos, O., Matos, T. Weak gravitational quantum effects in boson particles. Gen Relativ Gravit 53, 50 (2021). https://doi.org/10.1007/s10714-021-02810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02810-6

Keywords

Navigation