Abstract
We rewrite the Klein–Gordon equation in an arbitrary space-time transforming it into a generalized Schrödinger equation. Then, we take the weak field limit and show that this equation has certain differences with the traditional Schrödinger equation plus a gravitational field. Thus, this procedure shows that the Schrödinger equation derived in a covariant manner is different from the traditional one. We study the KG equation in a Newtonian space-time to describe the behavior of a scalar particle in an inertial system. This particle is immersed in a gravitational field with the new Schrödinger equation. We study particular physical systems given examples for which we find their energy levels, effective potential and the wave function of the systems. The results contain the gravitational effects due to the curvature of space-time. Finally, we discuss the possibility of the experimental verification of these effects in a laboratory using non-inertial reference frames.
Similar content being viewed by others
References
Birrell, N.D., Davies, P.C.W.: Quantum Field in Curved Space, 1st edn. Cambridge University Press, Cambridge (1982)
Matos, T., Guzman, F.S.: Scalar fields as dark matter in spiral galaxies. Class. Quant. Grav. 17, L9–L16 (2000)
Hui, L., Ostriker, J.P., Tremaine, S., Witten, E.: Ultralight scalars as cosmological dark matter. Phys. Rev. D 95(4), 043541 (2017)
Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quant. Grav 28, 213001 (2011)
Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. 443, 85–126 (1995)
Norte, R.A., Forsch, M., Wallucks, A., Marinković, I., Gröblacher, S.: Platform for measurements of the casimir force between two superconductors. Phys. Rev. Lett. 121, 030405 (2018)
Bose, S., Mazumdar, A., Morley, G.W., Ulbricht, H., Toroš, M., Paternostroa, M., Geraci, A.A., Barker, P.F., Kim, M.S., Milburn, G.: Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119, 240401 (2017)
Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 17, (2014)
Wald, R.M.: General Relativity, 1st edn. The University of Chicago Press, Chicago (1984)
Schutz, B.F.: A First Course in General Relativity, 2nd edn. Cambridge University Press, Cambridge (2009)
Dimopoulos, S., Landsberg, G.: Black holes at the large hadron collider. Phys. Rev. Lett. 87, 161602 (2001)
Lehn, R.D., Chabysheva, S.S., Hiller, J.R.: Klein-gordon equation in curved space-time. Eur. J. Phys. 39, (2018)
Rowan, D.J., Stephenson, G.: Solutions of the time-dependent klein-gordon equation in a schwarzschild background space. J. Phys. A Math. Gen. 9(10), 1631–1635 (1976)
Matos, T., Avilez, A., Bernal, T., Chavanis, P.-H.: Energy balance of a bose gas in curved spacetime. Gen. Relativ. Gravit. 51(12), 1–23 (2016)
Chavanis, P.-H., Matos, T.: Covariant theory of Bose-Einstein condensates in curved spacetimes with electromagnetic interactions: the hydrodynamic approach. Eur. Phys. J. Plus 132(1), 30 (2017)
Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. 1. WILEY-VCH, New Jersy (2005)
Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. 2. WILEY-VCH, New Jersy (2005)
Zettili, N.: Quantum Mechanics Concepts and Applications. John Wiley and Sons Ltd, New Jersy (2009)
de la Peña, L.: Introducción a la macánica cuántica. FCE, UNAM (2006)
Matos, T., Urena-Lopez, L.A.: A Further analysis of a cosmological model of quintessence and scalar dark matter. Phys. Rev. D 63, 063506 (2001)
Armstrong, L.: O(2,1) and the harmonic oscillator radial function. J. Math. Phys. 12(6), 956 (1971)
Itano, W.M., Monroe, C.R., Meekhof, D.M., Leibfried, B.E.K.D., Wineland, D.J.: Quantum harmonic oscillator state synthesis and analysis. Atom Optics 2995, (1997)
Sugiura, T.: Barrier potential across semiconductor p-n junction and resting membrane potential. Basic Sci. Clin. 27, (2011)
Anandan, J., Suzuki, J.: Quantum Mechanics in a Rotating Frames, 1st edn. Relativity in Rotating Frames (2004)
Chu, S., Bjorkholm, J.E., Ashkin, A., Cable, A.: Experimental observation of optically trapped atom. Phys. Rev. Lett. 57(3), 314 (1986)
David, C.A., Jason, R.W., Ethan, R.E., Chelsea, D., James, R.K., James, M.K., Norman, E.L., Kamal, O., Robert, F.S., Nan, Y., Robert, J.T.: Observation of Bose-Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020)
Acknowledgements
This work was partially supported by CONACyT México under grants CB-2011 No. 166212, CB-2014-01 No. 240512, Project No. 304001, 269652 and Fronteras Project 281; The authors are gratefully for the computing time granted by LANCAD and CONACYT in the Supercomputer Hybrid Cluster “Xiuhcoatl” at GENERAL COORDINATION OF INFORMATION AND COMMUNICATIONS TECHNOLOGIES (CGSTIC) of CINVESTAV. URL: https://clusterhibrido.cinvestav.mx/ and Abacus clusters at Cinvestav, IPN; I0101/131/07 C-234/07 of the Instituto Avanzado de Cosmología (IAC) collaboration (http://www.iac.edu.mx). O.G. acknowledges financial support from CONACyT doctoral fellowship and appreaciates Angelica C. Aguirre Castañón for her valuable review and support. Works of T.M. are partially supported by Conacyt through the Fondo Sectorial de Investigación para la Educación, grant CB-2014-1, No. 240512. The data that support the findings of this study are available from the corresponding author upon reasonable request.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gallegos, O., Matos, T. Weak gravitational quantum effects in boson particles. Gen Relativ Gravit 53, 50 (2021). https://doi.org/10.1007/s10714-021-02810-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10714-021-02810-6