Skip to main content
Log in

Coordinate effect: Vaidya solutions without integrating the field equations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We extend Vaidya’s algorithm for the description of a central mass losing or gaining energy due to electromagnetic-type radiation (‘null dust’) to the case of arbitrary radial corpuscular radiation. We also demonstrate the remarkable possibility of purely algebraic deduction of the Vaidya solution without integrating the field equations, and interpret this possibility as an artifact of curvature coordinates. Since Vaidya’s approach by itself cannot lead to certain dependence of mass on spacetime coordinates, the search for a corresponding mass-function represents an independent issue. In this regard, as a perspective, we discuss an outlook on the problem of variable masses as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Vaidya, P.: Curr. Sci. 12, 183 (1943)

    ADS  Google Scholar 

  3. Vaidya, P.C.: Proc. Indian Acad. Sci. Sect. A 33(5), 264 (1951). https://doi.org/10.1007/BF03173260

    Article  ADS  MathSciNet  Google Scholar 

  4. Vaidya, P.C.: Nature 171(4345), 260 (1953). https://doi.org/10.1038/171260a0

    Article  ADS  MathSciNet  Google Scholar 

  5. Mychelkin, E.G., Bekov, A.A.: The Gravitational Field of the Variable Mass on the Cosmological De Sitter Background. Preprint 90-05, Astrophysical Institute of the Academy of Sciences of the Kazakh SSR, Alma-Ata (1990)

  6. Raychaudhuri, A.K.: Zeitschrift für Physik 135(2), 225 (1953). https://doi.org/10.1007/BF01333345

    Article  ADS  MathSciNet  Google Scholar 

  7. Culetu, H.: (2016). http://arxiv.org/abs/1612.06009

  8. Foster, J.C., Ray, J.R.: J. Math. Phys. 13(7), 979 (1972). https://doi.org/10.1063/1.1666097

    Article  ADS  Google Scholar 

  9. Caban, P., Rembieliński, J., Smoliński, K.A., Walczak, Z.: Found. Phys. Lett. 19(6), 619 (2006). https://doi.org/10.1007/s10702-006-1015-4

    Article  Google Scholar 

  10. Ehrlich, R.: Astropart. Phys. 66, 11 (2015). https://doi.org/10.1016/j.astropartphys.2014.12.011

    Article  ADS  Google Scholar 

  11. Mychelkin, E.G., Makukov, M.A.: Int. J. Mod. Phys. D 24, 1544025 (2015). https://doi.org/10.1142/S0218271815440253

    Article  ADS  Google Scholar 

  12. Makukov, M.A., Mychelkin, E.G., Saveliev, V.L.: Int. J. Mod. Phys. Conf. Ser. 41, 1660133 (2016). https://doi.org/10.1142/S2010194516601332

    Article  Google Scholar 

  13. Mallett, R.L.: Phys. Rev. D 31(2), 416 (1985). https://doi.org/10.1103/PhysRevD.31.416

    Article  ADS  MathSciNet  Google Scholar 

  14. Kozhanov, T., Mychelkin, E.G.: Proc. Astrophys. Inst., Alma-Ata, 45, 85 (1986)

    ADS  Google Scholar 

  15. Tolman, R.C.: Relativity, Thermodynamics and Cosmology. Oxford at the Clarendon Press, London (1949)

    MATH  Google Scholar 

  16. Zhuravsky, A.: Handbook of Elliptical Functions. Academy of Science Press, Moscow (1941)

    Google Scholar 

  17. Gupta, Y.K., Gupta, S.: Gen. Relativ. Gravit. 20(12), 1293 (1988). https://doi.org/10.1007/BF00756054

    Article  ADS  Google Scholar 

  18. Fisher, I.Z.: Zhurnal Experimental’noj i Teoreticheskoj Fiziki 18, 636 (1948)

    Google Scholar 

  19. Janis, A.I., Newman, E.T., Winicour, J.: Phys. Rev. Lett. 20(16), 878 (1968). https://doi.org/10.1103/PhysRevLett.20.878

    Article  ADS  Google Scholar 

  20. Xanthopoulos, B.C., Zannias, T.: Phys. Rev. D 40(8), 2564 (1989). https://doi.org/10.1103/PhysRevD.40.2564

    Article  ADS  MathSciNet  Google Scholar 

  21. Makukov, M., Mychelkin, E.: Found. Phys. (2020). https://doi.org/10.1007/s10701-020-00384-y

    Article  Google Scholar 

  22. Dymnikova, I.: (2000). arXiv:gr-qc/0010016

  23. Kerr, R.P.: Phys. Rev. Lett. 11(5), 237 (1963). https://doi.org/10.1103/PhysRevLett.11.237

    Article  ADS  MathSciNet  Google Scholar 

  24. Newman, E.T., Janis, A.I.: J. Math. Phys. 6(6), 915 (1965). https://doi.org/10.1063/1.1704350

    Article  ADS  Google Scholar 

  25. Choptuik, M.W.: Phys. Rev. Lett. 70(1), 9 (1993). https://doi.org/10.1103/PhysRevLett.70.9

    Article  ADS  Google Scholar 

  26. Shaikh, A.A., Kundu, H., Sen, J.: Indian J. Math. 61, 41 (2019)

    MathSciNet  Google Scholar 

  27. Makukov, M.A., Mychelkin, E.G.: Phys. Rev. D 98(6), 064050 (2018). https://doi.org/10.1103/PhysRevD.98.064050

    Article  ADS  MathSciNet  Google Scholar 

  28. Geroch, R., Traschen, J.: Phys. Rev. D 36(4), 1017 (1987). https://doi.org/10.1103/PhysRevD.36.1017

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is partially supported within the Grant No. AP08052312 of the Ministry of Education and Science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Makukov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mychelkin, E.G., Makukov, M.A. Coordinate effect: Vaidya solutions without integrating the field equations. Gen Relativ Gravit 52, 113 (2020). https://doi.org/10.1007/s10714-020-02767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02767-y

Keywords

Navigation