Skip to main content
Log in

Analytical proof of the isospectrality of quasinormal modes for Schwarzschild-de Sitter and Schwarzschild-Anti de Sitter spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The deep reason why the equations describing axial and polar perturbations of Schwarzschild black holes have the same spectrum is far from trivial. In this article, we revisit the original proof and try to make it clearer. Still focusing on uncharged and non-rotating black holes, we extend the results to spacetimes including a cosmological constant, which have so far mostly been investigated numerically from this perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, B.P., et al., (LIGO Scientific, Virgo): Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arxiv:1602.03837

  2. Abbott, B.P., et al., (LIGO Scientific, Virgo): GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs (2018). arxiv:1811.12907

  3. Chirenti, C.: Black hole quasinormal modes in the era of LIGO. Braz. J. Phys. 48, 102 (2018). arXiv:1708.04476

    Article  ADS  Google Scholar 

  4. Nollert, H.-P.: TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars. Class. Quant. Gravity 16, R159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kokkotas, K.D., Schmidt, B.G.: Quasinormal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999). arxiv:gr-qc/9909058

    Article  ADS  MATH  Google Scholar 

  6. Berti, E., Cardoso, V., Yoshida, S.: Highly damped quasinormal modes of Kerr black holes: a complete numerical investigation. Phys. Rev. D 69, 124018 (2004). arXiv:gr-qc/0401052

    Article  ADS  Google Scholar 

  7. Dorband, E.N., Berti, E., Diener, P., Schnetter, E., Tiglio, M.: A Numerical study of the quasinormal mode excitation of Kerr black holes. Phys. Rev. D 74, 084028 (2006). arXiv:gr-qc/0608091

    Article  ADS  MathSciNet  Google Scholar 

  8. Schutz, B.F., Will, C.M.: Black hole normal modes: a semianalytic approach. Astrophys. J. 291, L33 (1985)

    Article  ADS  Google Scholar 

  9. Iyer, S., Will, C.M.: Black hole normal modes: a WKB approach. 1. Foundations and application of a higher order WKB analysis of potential barrier scattering. Phys. Rev. D 35, 3621 (1987)

    Article  ADS  Google Scholar 

  10. Iyer, S.: Black hole normal modes: a WKB approach. 2. Schwarzschild black holes. Phys. Rev. D 35, 3632 (1987)

    Article  ADS  Google Scholar 

  11. Kokkotas, K.D., Schutz, B.F.: Black hole normal modes: a WKB approach. 3. The Reissner-Nordstrom black hole. Phys. Rev. D 37, 3378 (1988)

    Article  ADS  Google Scholar 

  12. Konoplya, R.A.: Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 68, 024018 (2003). arXiv:gr-qc/0303052

    Article  ADS  MathSciNet  Google Scholar 

  13. Konoplya, R.A., Zhidenko, A., Zinhailo, A.F.: Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations (2019). arxiv:1904.10333

  14. Moulin, F., Barrau, A., Martineau, K.: An overview of quasinormal modes in modified and extended gravity. Universe 5, 202 (2019). arXiv:1908.06311

    Article  ADS  Google Scholar 

  15. Newman, E., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bhattacharyya, S., Shankaranarayanan, S.: Quasinormal modes as a distinguisher between general relativity and f(R) gravity: charged black-holes. Eur. Phys. J. C 78, 737 (2018). arXiv:1803.07576

    Article  ADS  Google Scholar 

  17. Prasobh, C.B., Kuriakose, V.C.: Quasinormal modes of Lovelock black holes. Eur. Phys. J. C 74, 3136 (2014)

    Article  ADS  Google Scholar 

  18. Bhattacharyya, S., Shankaranarayanan, S.: Distinguishing general relativity from Chern-Simons gravity using gravitational wave polarizations (2018). arxiv:1812.00187

  19. Ferrari, V., Pauri, M., Piazza, F.: Quasinormal modes of charged, dilaton black holes. Phys. Rev. D 63, 064009 (2001). arXiv:gr-qc/0005125

    Article  ADS  MathSciNet  Google Scholar 

  20. Brito, R., Pacilio, C.: Quasinormal modes of weakly charged Einstein-Maxwell-dilaton black holes. Phys. Rev. D 98, 104042 (2018). arXiv:1807.09081

    Article  ADS  MathSciNet  Google Scholar 

  21. Cardoso, V., Kimura, M., Maselli, A., Berti, E., Macedo, C.F.B., McManus, R.: Parametrized black hole quasinormal ringdown. I. Decoupled equations for nonrotating black holes (2019). arxiv:1901.01265

  22. Cardoso, V., Konoplya, R., Lemos, J.P.S.: Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter space-times: a complete study on the asymptotic behavior. Phys. Rev. D 68, 044024 (2003). arXiv:gr-qc/0305037

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dias, O.J.C., Eperon, F.C., Reall, H.S., Santos, J.E.: Strong cosmic censorship in de Sitter space. Phys. Rev. D 97, 104060 (2018a). arXiv:1801.09694

    Article  ADS  MathSciNet  Google Scholar 

  24. Dias, O.J.C., Reall, H.S., Santos, J.E.: Strong cosmic censorship: taking the rough with the smooth. JHEP 10, 001 (2018b). arXiv:1808.02895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Tattersall, O.J.: Kerr-(anti-)de Sitter black holes: perturbations and quasinormal modes in the slow rotation limit. Phys. Rev. D 98, 104013 (2018). arXiv:1808.10758

    Article  ADS  MathSciNet  Google Scholar 

  26. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon, Oxford, 646 pp (1992), Clarendon, Oxford, 646 pp (1985)

  27. Glampedakis, K., Johnson, A.D., Kennefick, D.: Darboux transformation in black hole perturbation theory. Phys. Rev. D 96, 024036 (2017). arXiv:1702.06459

    Article  ADS  MathSciNet  Google Scholar 

  28. Yurov, A.V., Yurov, V.A.: A look at the generalized Darboux transformations for the quasinormal spectra in Schwarzschild black hole perturbation theory: just how general should it be? Phys. Lett. A 383, 2571 (2019). arXiv:1809.10279

    Article  ADS  MathSciNet  Google Scholar 

  29. de Felice, F., Clarke, C.J.S.: Relativity on Curved Manifolds. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  30. Batic, D., Nowakowski, M., Morgan, K.: The problem of embedded eigenvalues for the Dirac equation in the Schwarzschild black hole metric. Universe 2, 31 (2016). arXiv:1701.03889

    Article  ADS  Google Scholar 

  31. Newman, E.T., Penrose, R.: Spin-coefficient formalism. Scholarpedia 4, 7445 (2009), revision #184895

  32. Casals i Casanellas, M.: Electromagnetic quantum field theory on Kerr-Newman black holes. Ph.D. thesis, University Coll., Dublin, Math. Phys. (2008). arxiv:0802.1885

  33. Hawking, S.W., Israel, W.: General Relativity. University Press, Cambridge. ISBN 9780521299282. http://www.cambridge.org/us/knowledge/isbn/item1131443/?site_locale=en_US (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Barrau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulin, F., Barrau, A. Analytical proof of the isospectrality of quasinormal modes for Schwarzschild-de Sitter and Schwarzschild-Anti de Sitter spacetimes. Gen Relativ Gravit 52, 82 (2020). https://doi.org/10.1007/s10714-020-02737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02737-4

Keywords

Navigation