Skip to main content
Log in

Stable, thin wall, negative mass bubbles in de Sitter space-time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Negative mass makes perfect physical sense as long as the dominant energy condition is satisfied by the corresponding energy-momentum tensor. Heretofore, only configurations of negative mass had been found (Belletête and Paranjape in Int J Mod Phys D 22:1341017, 2013; Mbarek and Paranjape in Phys Rev D 90:101502, 2014), the analysis did not address stability or dynamics. In this paper, we analyze both of these criteria. We demonstrate the existence of stable, static, negative mass bubbles in an asymptotically de Sitter space-time. The bubbles are solutions of the Einstein equations and correspond to an interior region of space-time containing a specific mass distribution, separated by a thin wall from the exact, negative mass Schwarzschild-de Sitter space-time in the exterior. We apply the Israel junction conditions at the wall. For the case of an interior corresponding simply to de Sitter space-time with a different cosmological constant from the outside space-time, separated by a thin wall with energy density that is independent of the radius, we find static but unstable solutions which satisfy the dominant energy condition everywhere. The bubbles can collapse through spherically symmetric configurations to the exact, singular, negative mass Schwarzschild-de Sitter solution. Interestingly, this provides a counter-example of the cosmic censorship hypothesis. Alternatively, the junction conditions can be used to give rise to an interior mass distribution that depends on the potential for the radius of the wall. We show that for no choice of the potential, for positive energy density on the wall that is independent of the radius, can we get a solution that is non-singular at the origin. However, if we allow the energy density on the wall to depend on the radius of the bubble, we can find stable, static, non-singular solutions of negative mass which everywhere satisfy the dominant energy condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This is a novel property of negative mass Schwarzschild-de Sitter, implying that the entropy associated with the cosmological horizon can grow without bound. This can be contrasted with positive mass Schwarzschild-de Sitter, where the total entropy associated with the cosmological and black hole horizons is bounded by the magnitude of \(\Lambda \).

  2. We thank E. Wilson-Ewing for pointing this out to us.

References

  1. Belletête, J., Paranjape, M.B.: Int. J. Mod. Phys. D 22, 1341017 (2013). arXiv:1304.1566

    Article  ADS  Google Scholar 

  2. Mbarek, S., Paranjape, M.B.: Phys. Rev. D 90, 101502 (2014). arXiv:1407.1457

    Article  ADS  Google Scholar 

  3. Schon, R., Yau, S.-T.: Commun. Math. Phys. 65, 45 (1979)

    Article  ADS  Google Scholar 

  4. Schon, R., Yau, S.-T.: Commun. Math. Phys. 79, 231 (1981)

    Article  ADS  Google Scholar 

  5. Witten, E.: Commun. Math. Phys. 80, 381 (1981)

    Article  ADS  Google Scholar 

  6. Arnowitt, R.L., Deser, S., Misner, C.W.: Gen. Relativ. Gravit 40, 1997 (2008). arXiv:gr-qc/0405109

    Article  ADS  Google Scholar 

  7. Mann, R.B.: Class. Quantum Grav. 14, 2927 (1997). arXiv:gr-qc/9705007

    Article  ADS  Google Scholar 

  8. Smith, W.L., Mann, R.B.: Phys. Rev. D 56, 4942 (1997). arXiv:gr-qc/9703007

    Article  ADS  MathSciNet  Google Scholar 

  9. Ashtekar, A., Bonga, B., Kesavan, A.: Class. Quantum Grav. 32, 025004 (2015a). arXiv:1409.3816

    Article  ADS  Google Scholar 

  10. Ashtekar, A., Bonga, B., Kesavan, A.: Phys. Rev. D 92, 044011 (2015b). arXiv:1506.06152

    Article  ADS  MathSciNet  Google Scholar 

  11. Ashtekar, A., Bonga, B., Kesavan, A.: Phys. Rev. D 92, 104032 (2015c). arXiv:1510.05593

    Article  ADS  MathSciNet  Google Scholar 

  12. Israel, W.: Nuovo Cim B44S10, 1 (1966). [Nuovo Cim.B 44, 1 (1966)]

    Article  ADS  Google Scholar 

  13. Visser, M., Wiltshire, D.L.: Class. Quantum Grav. 21, 1135 (2004). arXiv:gr-qc/0310107

    Article  ADS  Google Scholar 

  14. Berezin, V.A., Kuzmin, V.A., Tkachev, I.I.: Phys. Lett. 120B, 91 (1983)

    Article  ADS  Google Scholar 

  15. Blau, S.K., Guendelman, E.I., Guth, A.H.: Phys. Rev. D 35, 1747 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Farhi, E., Guth, A.H.: Phys. Lett. B 183, 149 (1987)

    Article  ADS  Google Scholar 

  17. Berezin, V.A., Kuzmin, V.A., Tkachev, I.I.: Phys. Rev. D 36, 2919 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  18. Farhi, E., Guth, A.H., Guven, J.: Nucl. Phys. B 339, 417 (1990)

    Article  ADS  Google Scholar 

  19. Aurilia, A., Palmer, M., Spallucci, E.: Phys. Rev. D 40, 2511 (1989)

    Article  ADS  Google Scholar 

  20. Mazur, P.O., Mottola, E.: Proc. Nat. Acad. Sci. 101, 9545 (2004). arXiv:gr-qc/0407075

    Article  ADS  Google Scholar 

  21. Aguirre, A., Johnson, M.C.: Phys. Rev. D 72, 103525 (2005). arXiv:gr-qc/0508093

    Article  ADS  Google Scholar 

  22. Aguirre, A., Johnson, M.C.: Phys. Rev. D 73, 123529 (2006). arXiv:gr-qc/0512034

    Article  ADS  Google Scholar 

  23. Barnaveli, A., Gogberashvili, M.: Theor. Math. Phys. 113, 1491 (1997), [Teor. Mat. Fiz.113,346(1997)], arXiv:hep-ph/9610548

  24. A. Barnaveli and M. Gogberashvili, pp. 5–44 (1995), arXiv:hep-ph/9505412

  25. Barnaveli, A., Gogberashvili, M.: General Relativity and Gravitation 26, 1117 (1994), ISSN 1572-9532, https://doi.org/10.1007/BF02108937

  26. Garriga, J., Megevand, A.: Int. J. Theor. Phys. 43, 883 (2004). arXiv:hep-th/0404097

    Article  Google Scholar 

  27. Callan Jr., C.G., Coleman, S.R.: Phys. Rev. D 16, 1762 (1977)

    Article  ADS  Google Scholar 

  28. Coleman, S.R.: Phys. Rev. D15, 2929 (1977), [Erratum: Phys. Rev.D16,1248(1977)]

  29. Coleman, S.R., De Luccia, F.: Phys. Rev. D 21, 3305 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  30. Penrose, R.: Riv. Nuovo Cim. 1, 252 (1969). [Gen. Relativ. Gravit 34, 1141 (2002)]

    ADS  Google Scholar 

  31. Adams, F.C., Freese, K., Widrow, L.M.: Phys. Rev. D 41, 347 (1990)

    Article  ADS  Google Scholar 

  32. Aguirre, A., Johnson, M.C., Larfors, M.: Phys. Rev. D81, 043527 (2010), arXiv:0911.4342

  33. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  34. Visser, M., Barcelo, C.: Energy Conditions and Their Cosmological Implications (World Scientific Press, 2000), pp. 98–112, URL https://www.worldscientific.com/doi/abs/10.1142/9789812792129_0014

  35. Debye, V.P., Huckel, E.: Phisikalische Zeeitschrift 24, 185 (1923), URL https://ci.nii.ac.jp/naid/10017119532/en/

  36. Paranjape, B.V., Paranjape, M.B.: Can. J. Phys. 90, 849 (2012). https://doi.org/10.1139/p2012-080

    Article  ADS  Google Scholar 

  37. Dyson, L., Kleban, M., Susskind, L., Journal of High Energy Physics 2002, 011 (2002) ISSN 1029–8479, https://doi.org/10.1088/1126-6708/2002/10/011

Download references

Acknowledgements

We thank Emil Mottola and Edward Wilson-Ewing for useful discussions. We thank NSERC of Canada for financial support and The Perimeter Institute for Theoretical Physics for hospitality. N. T. thanks to the Conicyt scholarship 21160064 and the University of Santiago de Chile. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Paranjape.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, M.C., Paranjape, M.B., Savard, A. et al. Stable, thin wall, negative mass bubbles in de Sitter space-time. Gen Relativ Gravit 52, 80 (2020). https://doi.org/10.1007/s10714-020-02732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02732-9

Navigation