The key role of magnetic fields in binary neutron star mergers

Abstract

The first multimessenger observation of a binary neutron star (BNS) merger in August 2017 demonstrated the huge scientific potential of these extraordinary events. This breakthrough led to a number of discoveries and provided the best evidence that BNS mergers can launch short gamma-ray burst (SGRB) jets and are responsible for a copious production of heavy r-process elements. On the other hand, the details of the merger and post-merger dynamics remain only poorly constrained, leaving behind important open questions. Numerical relativity simulations are a powerful tool to unveil the physical processes at work in a BNS merger and as such they offer the best chance to improve our ability to interpret the corresponding gravitational wave (GW) and electromagnetic emission. Here, we review the current theoretical investigation on BNS mergers based on general relativistic magnetohydrodynamics simulations, paying special attention to the magnetic field as a crucial ingredient. First, we discuss the evolution, amplification, and emerging structure of magnetic fields in BNS mergers. Then, we consider their impact on various critical aspects: (i) jet formation and the connection with SGRBs, (ii) matter ejection, r-process nucleosynthesis, and radioactively-powered kilonova transients, and (iii) post-merger GW emission.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    We note that while the BNS hypothesis remains favoured, the possibility of a NS-black hole system cannot be completely ruled out (e.g., [5, 60]).

  2. 2.

    For a more general discussion on BNS mergers and the progress of numerical relativity simulations, we refer the reader to a number of other reviews on the subject, e.g. [11, 37, 41, 100, 108].

  3. 3.

    Isolated NSs with much stronger magnetic fields exist, up to the typical \(10^{14}{-}10^{15}\,\hbox {G}\) of magnetars. However, there is no evidence for such high magnetizations in BNSs.

  4. 4.

    Such an outflow is naturally explained in terms of a “structured jet” composed by a highly collimated and energetic core surrounded by a less energetic wide-angle cocoon, where the latter is formed via the early interaction of the incipient jet with the baryon-polluted environment around the merger site (e.g., [79]).

  5. 5.

    Although we restrict the present discussion to BNS mergers, an accreting BH with the right properties to power a SGRB could also result from a NS–BH merger (see, e.g., [107] and refs. therein).

  6. 6.

    The interaction between the outflow and the dense surrounding environment contributes to the differences in terms of collimation with respect to the findings of, e.g., [129] (where the evolution also lasts over 200 ms).

  7. 7.

    After the present review was submitted, Ref. [98] further confirmed that superimposing by hand an extended dipolar magnetic field on a differentially rotating NS produces a collimated outflow, as found, e.g., in [75, 129, 139, 146]. In this case, the initial data were directly taken from the outcome of a nonmagnetized BNS merger simulation at 17 ms after merger and neutrino radiation was included. While this represents an important step forward with respect to studies like [75, 129, 139, 146], a main caveat remains: there is no guarantee that collimated outflows with properties similar to those reported in [98], which were obtained by imposing an ad hoc dipolar field at an arbitrary time, could also be obtained for magnetized BNSs going through the full merger process.

References

  1. 1.

    Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85 (2017). https://doi.org/10.1038/nature24471

    ADS  Article  Google Scholar 

  2. 2.

    Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    ADS  Article  Google Scholar 

  3. 3.

    Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    ADS  Article  Google Scholar 

  4. 4.

    Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9

    ADS  Article  Google Scholar 

  5. 5.

    Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Properties of the binary neutron star merger GW170817. Phys. Rev. X 9(1), 011001 (2019). https://doi.org/10.1103/PhysRevX.9.011001

    Article  Google Scholar 

  6. 6.

    Alexander, K.D., Berger, E., Fong, W., Williams, P.K.G., Guidorzi, C., Margutti, R., Metzger, B.D., Annis, J., Blanchard, P.K., Brout, D., et al.: The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys. J. Lett. 848, L21 (2017). https://doi.org/10.3847/2041-8213/aa905d

    ADS  Article  Google Scholar 

  7. 7.

    Alexander, K.D., Margutti, R., Blanchard, P.K., Fong, W., Berger, E., Hajela, A., Eftekhari, T., Chornock, R., Cowperthwaite, P.S., Giannios, D., et al.: A decline in the X-Ray through radio emission from GW170817 continues to support an off-axis structured jet. Astrophys. J. Lett. 863, L18 (2018). https://doi.org/10.3847/2041-8213/aad637

    ADS  Article  Google Scholar 

  8. 8.

    Aloy, M.A., Janka, H.T., Müller, E.: Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts. Astron. Astrophys. 436(1), 273 (2005). https://doi.org/10.1051/0004-6361:20041865

    ADS  Article  Google Scholar 

  9. 9.

    Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D., Palenzuela, C., Tohline, J.E.: Magnetized neutron-star mergers and gravitational-wave signals. Phys. Rev. Lett. 100(19), 191101 (2008). https://doi.org/10.1103/PhysRevLett.100.191101

    ADS  Article  Google Scholar 

  10. 10.

    Arcavi, I., Hosseinzadeh, G., Howell, D.A., McCully, C., Poznanski, D., Kasen, D., Barnes, J., Zaltzman, M., Vasylyev, S., Maoz, D., et al.: Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551(7678), 64 (2017). https://doi.org/10.1038/nature24291

    ADS  Article  Google Scholar 

  11. 11.

    Baiotti, L., Rezzolla, L.: Binary neutron star mergers: a review of Einstein’s richest laboratory. Rep. Prog. Phys. 80(9), 096901 (2017). https://doi.org/10.1088/1361-6633/aa67bb

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. Astrophys. J. 376, 214 (1991). https://doi.org/10.1086/170270

    ADS  Article  Google Scholar 

  13. 13.

    Barnes, J., Kasen, D.: Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775(1), 18 (2013). https://doi.org/10.1088/0004-637X/775/1/18

    ADS  Article  Google Scholar 

  14. 14.

    Barthelmy, S.D., Chincarini, G., Burrows, D.N., Gehrels, N., Covino, S., Moretti, A., Romano, P., O’Brien, P.T., Sarazin, C.L., Kouveliotou, C., et al.: An origin for short \(\gamma \)-ray bursts unassociated with current star formation. Nature 438, 994 (2005). https://doi.org/10.1038/nature04392

    ADS  Article  Google Scholar 

  15. 15.

    Bauswein, A., Goriely, S., Janka, H.T.: Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys. J. 773(1), 78 (2013). https://doi.org/10.1088/0004-637X/773/1/78

    ADS  Article  Google Scholar 

  16. 16.

    Bauswein, A., Janka, H.T.: Measuring neutron-star properties via gravitational waves from neutron-star mergers. Phys. Rev. Lett. 108(1), 011101 (2012). https://doi.org/10.1103/PhysRevLett.108.011101

    ADS  Article  Google Scholar 

  17. 17.

    Berger, E.: Short-duration gamma-ray bursts. Ann. Rev. Astron. Astrophys. 52, 43 (2014). https://doi.org/10.1146/annurev-astro-081913-035926

    ADS  Article  Google Scholar 

  18. 18.

    Berger, E., Fong, W., Chornock, R.: An r-process kilonova associated with the short-hard GRB 130603B. Astrophys. J. Lett. 774, L23 (2013). https://doi.org/10.1088/2041-8205/774/2/L23

    ADS  Article  Google Scholar 

  19. 19.

    Bernuzzi, S., Dietrich, T., Nagar, A.: Modeling the complete gravitational wave spectrum of neutron star mergers. Phys. Rev. Lett. 115(9), 091101 (2015). https://doi.org/10.1103/PhysRevLett.115.091101

    ADS  Article  Google Scholar 

  20. 20.

    Bilous, A.V., Watts, A.L., Harding, A.K., Riley, T.E., Arzoumanian, Z., Bogdanov, S., Gendreau, K.C., Ray, P.S., Guillot, S., Ho, W.C.G., et al.: A NICER view of PSR J0030+0451: evidence for a global-scale multipolar magnetic field. Astrophys. J. Lett. 887(1), L23 (2019). https://doi.org/10.3847/2041-8213/ab53e7

    ADS  Article  Google Scholar 

  21. 21.

    Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433 (1977). https://doi.org/10.1093/mnras/179.3.433

    ADS  Article  Google Scholar 

  22. 22.

    Carrasco, F., Viganò, D., Palenzuela, C.: Gradient subgrid-scale model for relativistic MHD large-eddy simulations. Phys. Rev. D 101(6), 063003 (2020). https://doi.org/10.1103/PhysRevD.101.063003

    ADS  Article  Google Scholar 

  23. 23.

    Ciolfi, R.: Short gamma-ray burst central engines. Int. J. Mod. Phys. D 27, 1842004 (2018). https://doi.org/10.1142/S021827181842004X

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Ciolfi, R.: Binary neutron star mergers after GW170817 (2020). arXiv e-prints arXiv:2005.02964

  25. 25.

    Ciolfi, R.: Collimated outflows from long-lived binary neutron star merger remnants. Mon. Not. R. Astron. Soc. Lett. 495(1), L66 (2020). https://doi.org/10.1093/mnrasl/slaa062

    ADS  Article  Google Scholar 

  26. 26.

    Ciolfi, R., Kalinani, J.V.: Magnetically driven baryon winds from binary neutron star merger remnants and the blue kilonova of August 2017 (2020). arXiv e-prints arXiv:2004.11298

  27. 27.

    Ciolfi, R., Kastaun, W., Giacomazzo, B., Endrizzi, A., Siegel, D.M., Perna, R.: General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star. Phys. Rev. D 95(6), 063016 (2017). https://doi.org/10.1103/PhysRevD.95.063016

    ADS  Article  Google Scholar 

  28. 28.

    Ciolfi, R., Kastaun, W., Kalinani, J.V., Giacomazzo, B.: First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger. Phys. Rev. D 100(2), 023005 (2019). https://doi.org/10.1103/PhysRevD.100.023005

    ADS  Article  Google Scholar 

  29. 29.

    Ciolfi, R., Rezzolla, L.: Twisted-torus configurations with large toroidal magnetic fields in relativistic stars. Mon. Not. R. Astron. Soc. Lett. 435, L43 (2013). https://doi.org/10.1093/mnrasl/slt092

    ADS  Article  Google Scholar 

  30. 30.

    Ciolfi, R., Siegel, D.M.: Short gamma-ray bursts in the “time-reversal” scenario. Astrophys. J. Lett. 798, L36 (2015). https://doi.org/10.1088/2041-8205/798/2/L36

    ADS  Article  Google Scholar 

  31. 31.

    Clark, J., Bauswein, A., Cadonati, L., Janka, H.T., Pankow, C., Stergioulas, N.: Prospects for high frequency burst searches following binary neutron star coalescence with advanced gravitational wave detectors. Phys. Rev. D 90(6), 062004 (2014). https://doi.org/10.1103/PhysRevD.90.062004

    ADS  Article  Google Scholar 

  32. 32.

    Coulter, D.A., Foley, R.J., Kilpatrick, C.D., Drout, M.R., Piro, A.L., Shappee, B.J., Siebert, M.R., Simon, J.D., Ulloa, N., Kasen, D., et al.: Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358(6370), 1556 (2017). https://doi.org/10.1126/science.aap9811

    ADS  Article  Google Scholar 

  33. 33.

    Dessart, L., Ott, C.D., Burrows, A., Rosswog, S., Livne, E.: Neutrino signatures and the neutrino-driven wind in binary neutron star mergers. Astrophys. J. 690(2), 1681 (2009). https://doi.org/10.1088/0004-637X/690/2/1681

    ADS  Article  Google Scholar 

  34. 34.

    Dionysopoulou, K., Alic, D., Rezzolla, L.: General-relativistic resistive-magnetohydrodynamic simulations of binary neutron stars. Phys. Rev. D 92(8), 084064 (2015). https://doi.org/10.1103/PhysRevD.92.084064

    ADS  Article  Google Scholar 

  35. 35.

    Duez, M.D., Liu, Y.T., Shapiro, S.L., Shibata, M., Stephens, B.C.: Collapse of magnetized hypermassive neutron stars in general relativity. Phys. Rev. Lett. 96(3), 031101 (2006). https://doi.org/10.1103/PhysRevLett.96.031101

    ADS  Article  Google Scholar 

  36. 36.

    Duez, M.D., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: General relativistic hydrodynamics with viscosity: Contraction, catastrophic collapse, and disk formation in hypermassive neutron stars. Phys. Rev. D 69(10), 104030 (2004). https://doi.org/10.1103/PhysRevD.69.104030

    ADS  Article  Google Scholar 

  37. 37.

    Duez, M.D., Zlochower, Y.: Numerical relativity of compact binaries in the 21st century. Rep. Prog. Phys. 82(1), 016902 (2019). https://doi.org/10.1088/1361-6633/aadb16

    ADS  Article  Google Scholar 

  38. 38.

    East, W.E., Paschalidis, V., Pretorius, F., Tsokaros, A.: Binary neutron star mergers: effects of spin and post-merger dynamics. Phys. Rev. D 100(12), 124042 (2019). https://doi.org/10.1103/PhysRevD.100.124042

    ADS  Article  Google Scholar 

  39. 39.

    Eichler, D., Livio, M., Piran, T., Schramm, D.N.: Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126 (1989). https://doi.org/10.1038/340126a0

    ADS  Article  Google Scholar 

  40. 40.

    Endrizzi, A., Ciolfi, R., Giacomazzo, B., Kastaun, W., Kawamura, T.: General relativistic magnetohydrodynamic simulations of binary neutron star mergers with the APR4 equation of state. Class. Quantum Grav. 33(16), 164001 (2016). https://doi.org/10.1088/0264-9381/33/16/164001

    ADS  Article  Google Scholar 

  41. 41.

    Faber, J.A., Rasio, F.A.: Binary neutron star mergers. Liv. Rev. Rel. 15(1), 8 (2012). https://doi.org/10.12942/lrr-2012-8

    Article  Google Scholar 

  42. 42.

    Fernández, R., Metzger, B.D.: Delayed outflows from black hole accretion tori following neutron star binary coalescence. Mon. Not. R. Astron. Soc. 435(1), 502 (2013). https://doi.org/10.1093/mnras/stt1312

    ADS  Article  Google Scholar 

  43. 43.

    Fernández, R., Tchekhovskoy, A., Quataert, E., Foucart, F., Kasen, D.: Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts. Mon. Not. R. Astron. Soc. 482(3), 3373 (2019). https://doi.org/10.1093/mnras/sty2932

    ADS  Article  Google Scholar 

  44. 44.

    Foucart, F., Haas, R., Duez, M.D., O’Connor, E., Ott, C.D., Roberts, L., Kidder, L.E., Lippuner, J., Pfeiffer, H.P., Scheel, M.A.: Low mass binary neutron star mergers: gravitational waves and neutrino emission. Phys. Rev. D 93(4), 044019 (2016). https://doi.org/10.1103/PhysRevD.93.044019

    ADS  Article  Google Scholar 

  45. 45.

    Fox, D.B., Frail, D.A., Price, P.A., Kulkarni, S.R., Berger, E., Piran, T., Soderberg, A.M., Cenko, S.B., Cameron, P.B., Gal-Yam, A., et al.: The afterglow of GRB050709 and the nature of the short-hard gamma-ray bursts. Nature 437, 845 (2005)

    ADS  Article  Google Scholar 

  46. 46.

    Fujibayashi, S., Kiuchi, K., Nishimura, N., Sekiguchi, Y., Shibata, M.: Mass ejection from the remnant of a binary neutron star merger: viscous-radiation hydrodynamics study. Astrophys. J. 860(1), 64 (2018). https://doi.org/10.3847/1538-4357/aabafd

    ADS  Article  Google Scholar 

  47. 47.

    Fujibayashi, S., Shibata, M., Wanajo, S., Kiuchi, K., Kyutoku, K., Sekiguchi, Y.: Mass ejection from disks surrounding a low-mass black hole: viscous neutrino-radiation hydrodynamics simulation in full general relativity. Phys. Rev. D 101(8), 083029 (2020). https://doi.org/10.1103/PhysRevD.101.083029

    ADS  Article  Google Scholar 

  48. 48.

    Galama, T.J., Vreeswijk, P.M., van Paradijs, J., Kouveliotou, C., Augusteijn, T., Böhnhardt, H., Brewer, J.P., Doublier, V., Gonzalez, J.F., Leibundgut, B., et al.: An unusual supernova in the error box of the \(\gamma \)-ray burst of 25 April 1998. Nature 395, 670 (1998). https://doi.org/10.1038/27150

    ADS  Article  Google Scholar 

  49. 49.

    Gao, W.H., Fan, Y.Z.: Short-living supermassive magnetar model for the early X-ray flares following short GRBs. Chin. J. Astron. Astrophys. 6, 513 (2006). https://doi.org/10.1088/1009-9271/6/5/01

    ADS  Article  Google Scholar 

  50. 50.

    Gehrels, N., Chincarini, G., Giommi, P., Mason, K.O., Nousek, J.A., Wells, A.A., White, N.E., Barthelmy, S.D., Burrows, D.N., Cominsky, L.R., et al.: The swift gamma-ray burst mission. Astrophys. J. 611, 1005 (2004). https://doi.org/10.1086/422091

    ADS  Article  Google Scholar 

  51. 51.

    Gehrels, N., Sarazin, C.L., O’Brien, P.T., Zhang, B., Barbier, L., Barthelmy, S.D., Blustin, A., Burrows, D.N., Cannizzo, J., Cummings, J.R., et al.: A short \(\gamma \)-ray burst apparently associated with an elliptical galaxy at redshift \(z = 0.225\). Nature 437, 851 (2005). https://doi.org/10.1038/nature04142

    ADS  Article  Google Scholar 

  52. 52.

    Ghirlanda, G., Salafia, O.S., Paragi, Z., Giroletti, M., Yang, J., Marcote, B., Blanchard, J., Agudo, I., An, T., Bernardini, M.G., et al.: Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363(6430), 968 (2019). https://doi.org/10.1126/science.aau8815

    ADS  Article  Google Scholar 

  53. 53.

    Giacomazzo, B., Rezzolla, L., Baiotti, L.: Can magnetic fields be detected during the inspiral of binary neutron stars? Mon. Not. R. Astron. Soc. 399, L164 (2009). https://doi.org/10.1111/j.1745-3933.2009.00745.x

    ADS  Article  Google Scholar 

  54. 54.

    Giacomazzo, B., Rezzolla, L., Baiotti, L.: Accurate evolutions of inspiralling and magnetized neutron stars: equal-mass binaries. Phys. Rev. D 83(4), 044014 (2011). https://doi.org/10.1103/PhysRevD.83.044014

    ADS  Article  Google Scholar 

  55. 55.

    Giacomazzo, B., Zrake, J., Duffell, P., MacFadyen, A.I., Perna, R.: Producing magnetar magnetic fields in the merger of binary neutron stars. Astrophys. J. 809(1), 39 (2015). https://doi.org/10.1088/0004-637X/809/1/39

    ADS  Article  Google Scholar 

  56. 56.

    Goldstein, A., Veres, P., Burns, E., Briggs, M.S., Hamburg, R., Kocevski, D., Wilson-Hodge, C.A., Preece, R.D., Poolakkil, S., Roberts, O.J., et al.: An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 848, L14 (2017). https://doi.org/10.3847/2041-8213/aa8f41

    ADS  Article  Google Scholar 

  57. 57.

    Grossman, D., Korobkin, O., Rosswog, S., Piran, T.: The long-term evolution of neutron star merger remnants—II. Radioactively powered transients. Mon. Not. R. Astron. Soc. 439(1), 757 (2014). https://doi.org/10.1093/mnras/stt2503

    ADS  Article  Google Scholar 

  58. 58.

    Hallinan, G., Corsi, A., Mooley, K.P., Hotokezaka, K., Nakar, E., Kasliwal, M.M., Kaplan, D.L., Frail, D.A., Myers, S.T., Murphy, T., et al.: A radio counterpart to a neutron star merger. Science 358, 1579 (2017). https://doi.org/10.1126/science.aap9855

    ADS  Article  Google Scholar 

  59. 59.

    Hanauske, M., Takami, K., Bovard, L., Rezzolla, L., Font, J.A., Galeazzi, F., Stöcker, H.: Rotational properties of hypermassive neutron stars from binary mergers. Phys. Rev. D 96(4), 043004 (2017). https://doi.org/10.1103/PhysRevD.96.043004

    ADS  Article  Google Scholar 

  60. 60.

    Hinderer, T., Nissanke, S., Foucart, F., Hotokezaka, K., Vincent, T., Kasliwal, M., Schmidt, P., Williamson, A.R., Nichols, D.A., Duez, M.D., et al.: Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study. Phys. Rev. D 100(6), 063021 (2019). https://doi.org/10.1103/PhysRevD.100.063021

    ADS  Article  Google Scholar 

  61. 61.

    Hotokezaka, K., Beniamini, P., Piran, T.: Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int. J. Mod. Phys. D 27(13), 1842005 (2018). https://doi.org/10.1142/S0218271818420051

    ADS  MathSciNet  Article  Google Scholar 

  62. 62.

    Hotokezaka, K., Kiuchi, K., Kyutoku, K., Muranushi, T., Sekiguchi, Y.I., Shibata, M., Taniguchi, K.: Remnant massive neutron stars of binary neutron star mergers: evolution process and gravitational waveform. Phys. Rev. D 88(4), 044026 (2013). https://doi.org/10.1103/PhysRevD.88.044026

    ADS  Article  Google Scholar 

  63. 63.

    Hotokezaka, K., Kiuchi, K., Kyutoku, K., Okawa, H., Sekiguchi, Y.I., Shibata, M., Taniguchi, K.: Mass ejection from the merger of binary neutron stars. Phys. Rev. D 87(2), 024001 (2013). https://doi.org/10.1103/PhysRevD.87.024001

    ADS  Article  Google Scholar 

  64. 64.

    Just, O., Bauswein, A., Ardevol Pulpillo, R., Goriely, S., Janka, H.T.: Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448(1), 541 (2015). https://doi.org/10.1093/mnras/stv009

    ADS  Article  Google Scholar 

  65. 65.

    Just, O., Obergaulinger, M., Janka, H.T., Bauswein, A., Schwarz, N.: Neutron-star merger ejecta as obstacles to neutrino-powered jets of gamma-ray bursts. Astrophys. J. Lett. 816, L30 (2016). https://doi.org/10.3847/2041-8205/816/2/L30

    ADS  Article  Google Scholar 

  66. 66.

    Kasen, D., Badnell, N.R., Barnes, J.: Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774(1), 25 (2013). https://doi.org/10.1088/0004-637X/774/1/25

    ADS  Article  Google Scholar 

  67. 67.

    Kasen, D., Metzger, B., Barnes, J., Quataert, E., Ramirez-Ruiz, E.: Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551(7678), 80 (2017). https://doi.org/10.1038/nature24453

    ADS  Article  Google Scholar 

  68. 68.

    Kastaun, W., Ciolfi, R., Giacomazzo, B.: Structure of stable binary neutron star merger remnants: a case study. Phys. Rev. D 94(4), 044060 (2016). https://doi.org/10.1103/PhysRevD.94.044060

    ADS  Article  Google Scholar 

  69. 69.

    Kastaun, W., Galeazzi, F.: Properties of hypermassive neutron stars formed in mergers of spinning binaries. Phys. Rev. D 91, 064027 (2015). https://doi.org/10.1103/PhysRevD.91.064027

    ADS  Article  Google Scholar 

  70. 70.

    Kawaguchi, K., Shibata, M., Tanaka, M.: Radiative transfer simulation for the optical and near-infrared electromagnetic counterparts to GW170817. Astrophys. J. Lett. 865(2), L21 (2018). https://doi.org/10.3847/2041-8213/aade02

    ADS  Article  Google Scholar 

  71. 71.

    Kawamura, T., Giacomazzo, B., Kastaun, W., Ciolfi, R., Endrizzi, A., Baiotti, L., Perna, R.: Binary neutron star mergers and short gamma-ray bursts: effects of magnetic field orientation, equation of state, and mass ratio. Phys. Rev. D 94, 064012 (2016). https://doi.org/10.1103/PhysRevD.94.064012

    ADS  Article  Google Scholar 

  72. 72.

    Kiuchi, K., Cerdá-Durán, P., Kyutoku, K., Sekiguchi, Y., Shibata, M.: Efficient magnetic-field amplification due to the Kelvin–Helmholtz instability in binary neutron star mergers. Phys. Rev. D 92(12), 124034 (2015). https://doi.org/10.1103/PhysRevD.92.124034

    ADS  Article  Google Scholar 

  73. 73.

    Kiuchi, K., Kyutoku, K., Sekiguchi, Y., Shibata, M.: Global simulations of strongly magnetized remnant massive neutron stars formed in binary neutron star mergers. Phys. Rev. D 97(12), 124039 (2018). https://doi.org/10.1103/PhysRevD.97.124039

    ADS  Article  Google Scholar 

  74. 74.

    Kiuchi, K., Kyutoku, K., Sekiguchi, Y., Shibata, M., Wada, T.: High resolution numerical relativity simulations for the merger of binary magnetized neutron stars. Phys. Rev. D 90(4), 041502 (2014). https://doi.org/10.1103/PhysRevD.90.041502

    ADS  Article  Google Scholar 

  75. 75.

    Kiuchi, K., Kyutoku, K., Shibata, M.: Three-dimensional evolution of differentially rotating magnetized neutron stars. Phys. Rev. D 86(6), 064008 (2012). https://doi.org/10.1103/PhysRevD.86.064008

    ADS  Article  Google Scholar 

  76. 76.

    Kulkarni, S.R.: Modeling supernova-like explosions associated with gamma-ray bursts with short durations (2005). arXiv e-prints arXiv:astro-ph/0510256

  77. 77.

    Kumar, P., Zhang, B.: The physics of gamma-ray bursts and relativistic jets. Phys. Rep. 561, 1 (2015). https://doi.org/10.1016/j.physrep.2014.09.008

    ADS  Article  Google Scholar 

  78. 78.

    Lattimer, J.M., Schramm, D.N.: Black-hole-neutron-star collisions. Astrophys. J. Lett. 192, L145 (1974). https://doi.org/10.1086/181612

    ADS  Article  Google Scholar 

  79. 79.

    Lazzati, D., Perna, R., Morsony, B.J., Lopez-Camara, D., Cantiello, M., Ciolfi, R., Giacomazzo, B., Workman, J.C.: Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817. Phys. Rev. Lett. 120(24), 241103 (2018). https://doi.org/10.1103/PhysRevLett.120.241103

    ADS  Article  Google Scholar 

  80. 80.

    Li, L.X., Paczyński, B.: Transient events from neutron star mergers. Astrophys. J. 507, L59 (1998). https://doi.org/10.1086/311680

    ADS  Article  Google Scholar 

  81. 81.

    Lippuner, J., Roberts, L.F.: r-Process lanthanide production and heating rates in kilonovae. Astrophys. J. 815(2), 82 (2015). https://doi.org/10.1088/0004-637X/815/2/82

    ADS  Article  Google Scholar 

  82. 82.

    Liu, Y.T., Shapiro, S.L., Etienne, Z.B., Taniguchi, K.: General relativistic simulations of magnetized binary neutron star mergers. Phys. Rev. D 78(2), 024012 (2008). https://doi.org/10.1103/PhysRevD.78.024012

    ADS  Article  Google Scholar 

  83. 83.

    Lorimer, D.R.: Binary and millisecond pulsars. Liv. Rev. Rel. 11, 8 (2008). https://doi.org/10.12942/lrr-2008-8

    Article  MATH  Google Scholar 

  84. 84.

    Lü, H.J., Zhang, B., Lei, W.H., Li, Y., Lasky, P.D.: The millisecond magnetar central engine in short GRBs. Astrophys. J. 805, 89 (2015). https://doi.org/10.1088/0004-637X/805/2/89

    ADS  Article  Google Scholar 

  85. 85.

    Lyman, J.D., Lamb, G.P., Levan, A.J., Mandel, I., Tanvir, N.R., Kobayashi, S., Gompertz, B., Hjorth, J., Fruchter, A.S., Kangas, T., et al.: The optical afterglow of the short gamma-ray burst associated with GW170817. Nat. Astr. 2, 751 (2018). https://doi.org/10.1038/s41550-018-0511-3

    Article  Google Scholar 

  86. 86.

    Margutti, R., Berger, E., Fong, W., Guidorzi, C., Alexander, K.D., Metzger, B.D., Blanchard, P.K., Cowperthwaite, P.S., Chornock, R., Eftekhari, T., et al.: The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-Ray emission from an off-axis jet. Astrophys. J. Lett. 848, L20 (2017). https://doi.org/10.3847/2041-8213/aa9057

    ADS  Article  Google Scholar 

  87. 87.

    Martin, D., Perego, A., Arcones, A., Thielemann, F.K., Korobkin, O., Rosswog, S.: Neutrino-driven winds in the aftermath of a neutron star merger: nucleosynthesis and electromagnetic transients. Astrophys. J. 813(1), 2 (2015). https://doi.org/10.1088/0004-637X/813/1/2

    ADS  Article  Google Scholar 

  88. 88.

    Metzger, B.D.: Kilonovae. Liv. Rev. Rel. 23(1), 1 (2019). https://doi.org/10.1007/s41114-019-0024-0

    Article  Google Scholar 

  89. 89.

    Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.: Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650 (2010). https://doi.org/10.1111/j.1365-2966.2010.16864.x

    ADS  Article  Google Scholar 

  90. 90.

    Metzger, B.D., Piro, A.L.: Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars. Mon. Not. R. Astron. Soc. 439, 3916 (2014). https://doi.org/10.1093/mnras/stu247

    ADS  Article  Google Scholar 

  91. 91.

    Metzger, B.D., Quataert, E., Thompson, T.A.: Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 385, 1455 (2008). https://doi.org/10.1111/j.1365-2966.2008.12923.x

    ADS  Article  Google Scholar 

  92. 92.

    Metzger, B.D., Thompson, T.A., Quataert, E.: A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. Lett. 856(2), 101 (2018). https://doi.org/10.3847/1538-4357/aab095

    ADS  Article  Google Scholar 

  93. 93.

    Meyer, B.S.: Decompression of initially cold neutron star matter: a mechanism for the r-process? Astrophys. J. 343, 254 (1989). https://doi.org/10.1086/167702

    ADS  Article  Google Scholar 

  94. 94.

    Mochkovitch, R., Hernanz, M., Isern, J., Martin, X.: Gamma-ray bursts as collimated jets from neutron star/black hole mergers. Nature 361, 236 (1993). https://doi.org/10.1038/361236a0

    ADS  Article  Google Scholar 

  95. 95.

    Mooley, K.P., Deller, A.T., Gottlieb, O., Nakar, E., Hallinan, G., Bourke, S., Frail, D.A., Horesh, A., Corsi, A., Hotokezaka, K.: Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561, 355 (2018). https://doi.org/10.1038/s41586-018-0486-3

    ADS  Article  Google Scholar 

  96. 96.

    Mooley, K.P., Nakar, E., Hotokezaka, K., Hallinan, G., Corsi, A., Frail, D.A., Horesh, A., Murphy, T., Lenc, E., Kaplan, D.L., et al.: A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature 554, 207 (2018). https://doi.org/10.1038/nature25452

    ADS  Article  Google Scholar 

  97. 97.

    Most, E.R., Papenfort, L.J., Rezzolla, L.: Beyond second-order convergence in simulations of magnetized binary neutron stars with realistic microphysics. Mon. Not. R. Astron. Soc. 490(3), 3588 (2019). https://doi.org/10.1093/mnras/stz2809

    ADS  Article  Google Scholar 

  98. 98.

    Mösta, P., Radice, D., Haas, R., Schnetter, E., Bernuzzi, S.: A magnetar engine for short GRBs and kilonovae (2020). arXiv e-prints arXiv:2003.06043

  99. 99.

    Narayan, R., Paczynski, B., Piran, T.: Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. Lett. 395, L83 (1992). https://doi.org/10.1086/186493

    ADS  Article  Google Scholar 

  100. 100.

    Nathanail, A.: Binary neutron star and short gamma-ray burst simulations in light of GW170817. Galaxies 6(4), 119 (2018). https://doi.org/10.3390/galaxies6040119

    ADS  Article  Google Scholar 

  101. 101.

    Nedora, V., Bernuzzi, S., Radice, D., Perego, A., Endrizzi, A., Ortiz, N.: Spiral-wave wind for the blue kilonova. Astrophys. J. Lett. 886(2), L30 (2019). https://doi.org/10.3847/2041-8213/ab5794

    ADS  Article  Google Scholar 

  102. 102.

    Neilsen, D., Liebling, S.L., Anderson, M., Lehner, L., O’Connor, E., Palenzuela, C.: Magnetized neutron stars with realistic equations of state and neutrino cooling. Phys. Rev. D 89(10), 104029 (2014). https://doi.org/10.1103/PhysRevD.89.104029

    ADS  Article  Google Scholar 

  103. 103.

    Oganesyan, G., Ascenzi, S., Branchesi, M., Salafia, O.S., Dall’Osso, S., Ghirlanda, G.: Structured jets and X-Ray plateaus in gamma-ray burst phenomena. Astrophys. J. 893(2), 88 (2020). https://doi.org/10.3847/1538-4357/ab8221

    ADS  Article  Google Scholar 

  104. 104.

    Paczynski, B.: Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 308, L43 (1986). https://doi.org/10.1086/184740

    ADS  Article  Google Scholar 

  105. 105.

    Palenzuela, C., Lehner, L., Ponce, M., Liebling, S.L., Anderson, M., Neilsen, D., Motl, P.: Electromagnetic and gravitational outputs from binary-neutron-star coalescence. Phys. Rev. Lett. 111(6), 061105 (2013). https://doi.org/10.1103/PhysRevLett.111.061105

    ADS  Article  Google Scholar 

  106. 106.

    Palenzuela, C., Liebling, S.L., Neilsen, D., Lehner, L., Caballero, O.L., O’Connor, E., Anderson, M.: Effects of the microphysical equation of state in the mergers of magnetized neutron stars with neutrino cooling. Phys. Rev. D 92(4), 044045 (2015). https://doi.org/10.1103/PhysRevD.92.044045

    ADS  Article  Google Scholar 

  107. 107.

    Paschalidis, V., Ruiz, M., Shapiro, S.L.: Relativistic simulations of black hole-neutron star coalescence: the jet emerges. Astrophys. J. Lett. 806, L14 (2015). https://doi.org/10.1088/2041-8205/806/1/L14

    ADS  Article  Google Scholar 

  108. 108.

    Paschalidis, V.: General relativistic simulations of compact binary mergers as engines for short gamma-ray bursts. Class. Quantum Grav. 34(8), 084002 (2017). https://doi.org/10.1088/1361-6382/aa61ce

    ADS  MathSciNet  Article  MATH  Google Scholar 

  109. 109.

    Paschalidis, V., Stergioulas, N.: Rotating stars in relativity. Liv. Rev. Rel. 20(1), 7 (2017). https://doi.org/10.1007/s41114-017-0008-x

    Article  Google Scholar 

  110. 110.

    Paschalidis, V., Ruiz, M.: Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse? Phys. Rev. D 100(4), 043001 (2019). https://doi.org/10.1103/PhysRevD.100.043001

    ADS  Article  Google Scholar 

  111. 111.

    Perego, A., Radice, D., Bernuzzi, S.: AT 2017gfo: an anisotropic and three-component kilonova counterpart of GW170817. Astrophys. J. Lett. 850(2), L37 (2017). https://doi.org/10.3847/2041-8213/aa9ab9

    ADS  Article  Google Scholar 

  112. 112.

    Perego, A., Rosswog, S., Cabezón, R.M., Korobkin, O., Käppeli, R., Arcones, A., Liebendörfer, M.: Neutrino-driven winds from neutron star merger remnants. Mon. Not. R. Astron. Soc. 443(4), 3134 (2014). https://doi.org/10.1093/mnras/stu1352

    ADS  Article  Google Scholar 

  113. 113.

    Perego, A., Yasin, H., Arcones, A.: Neutrino pair annihilation above merger remnants: implications of a long-lived massive neutron star. J. Phys. G: Nucl. Phys. 44(8), 084007 (2017). https://doi.org/10.1088/1361-6471/aa7bdc

    ADS  Article  Google Scholar 

  114. 114.

    Pian, E., D’Avanzo, P., Benetti, S., Branchesi, M., Brocato, E., Campana, S., Cappellaro, E., Covino, S., D’Elia, V., Fynbo, J.P.U., et al.: Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551(7678), 67 (2017). https://doi.org/10.1038/nature24298

    ADS  Article  Google Scholar 

  115. 115.

    Piran, T.: The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143 (2004). https://doi.org/10.1103/RevModPhys.76.1143

    ADS  Article  Google Scholar 

  116. 116.

    Ponce, M., Palenzuela, C., Lehner, L., Liebling, S.L.: Interaction of misaligned magnetospheres in the coalescence of binary neutron stars. Phys. Rev. D 90(4), 044007 (2014). https://doi.org/10.1103/PhysRevD.90.044007

    ADS  Article  Google Scholar 

  117. 117.

    Price, D.J., Rosswog, S.: Producing ultrastrong magnetic fields in neutron star mergers. Science 312(5774), 719 (2006). https://doi.org/10.1126/science.1125201

    ADS  Article  Google Scholar 

  118. 118.

    Radice, D.: General-relativistic large-eddy simulations of binary neutron star mergers. Astrophys. J. Lett. 838(1), L2 (2017). https://doi.org/10.3847/2041-8213/aa6483

    ADS  Article  Google Scholar 

  119. 119.

    Radice, D., Galeazzi, F., Lippuner, J., Roberts, L.F., Ott, C.D., Rezzolla, L.: Dynamical mass ejection from binary neutron star mergers. Mon. Not. R. Astron. Soc. 460(3), 3255 (2016). https://doi.org/10.1093/mnras/stw1227

    ADS  Article  Google Scholar 

  120. 120.

    Raithel, C.A.: Constraints on the neutron star equation of state from GW170817. Eur. Phys. J. A 55(5), 80 (2019). https://doi.org/10.1140/epja/i2019-12759-5

    ADS  Article  Google Scholar 

  121. 121.

    Rea, N., Esposito, P., Turolla, R., Israel, G.L., Zane, S., Stella, L., Mereghetti, S., Tiengo, A., Götz, D., Göğüs, E., et al.: A low-magnetic-field soft gamma repeater. Science 330(6006), 944 (2010). https://doi.org/10.1126/science.1196088

    ADS  Article  Google Scholar 

  122. 122.

    Rezzolla, L., Giacomazzo, B., Baiotti, L., Granot, J., Kouveliotou, C., Aloy, M.A.: The missing link: merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts. Astrophys. J. Lett. 732(11), L6 (2011). https://doi.org/10.1088/2041-8205/732/1/L6

    ADS  Article  Google Scholar 

  123. 123.

    Rosswog, S.: Mergers of neutron star-black hole binaries with small mass ratios: nucleosynthesis, gamma-ray bursts, and electromagnetic transients. Astrophys. J. 634, 1202 (2005). https://doi.org/10.1086/497062

    ADS  Article  Google Scholar 

  124. 124.

    Rowlinson, A., O’Brien, P.T., Metzger, B.D., Tanvir, N.R., Levan, A.J.: Signatures of magnetar central engines in short GRB light curves. Mon. Not. R. Astron. Soc. 430, 1061 (2013). https://doi.org/10.1093/mnras/sts683

    ADS  Article  Google Scholar 

  125. 125.

    Rowlinson, A., O’Brien, P.T., Tanvir, N.R., Zhang, B., Evans, P.A., Lyons, N., Levan, A.J., Willingale, R., Page, K.L., Onal, O., et al.: The unusual X-ray emission of the short Swift GRB 090515: evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409, 531 (2010). https://doi.org/10.1111/j.1365-2966.2010.17354.x

    ADS  Article  Google Scholar 

  126. 126.

    Ruffert, M., Janka, H.T.: Gamma-ray bursts from accreting black holes in neutron star mergers. Astron. Astrophys. 344, 573 (1999)

    ADS  Google Scholar 

  127. 127.

    Ruiz, M., Lang, R.N., Paschalidis, V., Shapiro, S.L.: Binary neutron star mergers: a jet engine for short gamma-ray bursts. Astrophys. J. Lett. 824, L6 (2016). https://doi.org/10.3847/2041-8205/824/1/L6

    ADS  Article  Google Scholar 

  128. 128.

    Ruiz, M., Shapiro, S.L.: General relativistic magnetohydrodynamics simulations of prompt-collapse neutron star mergers: the absence of jets. Phys. Rev. D 96(8), 084063 (2017). https://doi.org/10.1103/PhysRevD.96.084063

    ADS  Article  Google Scholar 

  129. 129.

    Ruiz, M., Shapiro, S.L., Tsokaros, A.: GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys. Rev. D 97, 021501 (2018). https://doi.org/10.1103/PhysRevD.97.021501

    ADS  Article  Google Scholar 

  130. 130.

    Ruiz, M., Tsokaros, A., Paschalidis, V., Shapiro, S.L.: Effects of spin on magnetized binary neutron star mergers and jet launching. Phys. Rev. D 99(8), 084032 (2019). https://doi.org/10.1103/PhysRevD.99.084032

    ADS  Article  Google Scholar 

  131. 131.

    Ruiz, M., Tsokaros, A., Shapiro, S.L.: Magnetohydrodynamic simulations of binary neutron star mergers in general relativity: effects of magnetic field orientation on jet launching. Phys. Rev. D 101(6), 064042 (2020). https://doi.org/10.1103/PhysRevD.101.064042

    ADS  Article  Google Scholar 

  132. 132.

    Salafia, O.S., Ghirlanda, G., Ascenzi, S., Ghisellini, G.: On-axis view of GRB 170817A. Astron. Astrophys. 628, A18 (2019). https://doi.org/10.1051/0004-6361/201935831

    ADS  Article  Google Scholar 

  133. 133.

    Savchenko, V., Ferrigno, C., Kuulkers, E., Bazzano, A., Bozzo, E., Brandt, S., Chenevez, J., Courvoisier, T.J.L., Diehl, R., Domingo, A., et al.: INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. Lett. 848, L15 (2017). https://doi.org/10.3847/2041-8213/aa8f94

    ADS  Article  Google Scholar 

  134. 134.

    Sekiguchi, Y., Kiuchi, K., Kyutoku, K., Shibata, M.: Gravitational waves and neutrino emission from the merger of binary neutron stars. Phys. Rev. Lett. 107(5), 051102 (2011). https://doi.org/10.1103/PhysRevLett.107.051102

    ADS  Article  Google Scholar 

  135. 135.

    Sekiguchi, Y., Kiuchi, K., Kyutoku, K., Shibata, M., Taniguchi, K.: Dynamical mass ejection from the merger of asymmetric binary neutron stars: radiation-hydrodynamics study in general relativity. Phys. Rev. D 93(12), 124046 (2016). https://doi.org/10.1103/PhysRevD.93.124046

    ADS  Article  Google Scholar 

  136. 136.

    Shibata, M., Hotokezaka, K.: Merger and mass ejection of neutron star binaries. Ann. Rev. Nucl. Part. Sci. 69, 41 (2019). https://doi.org/10.1146/annurev-nucl-101918-023625

    ADS  Article  Google Scholar 

  137. 137.

    Shibata, M., Kiuchi, K.: Gravitational waves from remnant massive neutron stars of binary neutron star merger: viscous hydrodynamics effects. Phys. Rev. D 95(12), 123003 (2017). https://doi.org/10.1103/PhysRevD.95.123003

    ADS  Article  Google Scholar 

  138. 138.

    Shibata, M., Kiuchi, K., Sekiguchi, Y.I.: General relativistic viscous hydrodynamics of differentially rotating neutron stars. Phys. Rev. D 95(8), 083005 (2017). https://doi.org/10.1103/PhysRevD.95.083005

    ADS  Article  Google Scholar 

  139. 139.

    Shibata, M., Suwa, Y., Kiuchi, K., Ioka, K.: Afterglow of a binary neutron star merger. Astrophys. J. Lett. 734(2), L36 (2011). https://doi.org/10.1088/2041-8205/734/2/L36

    ADS  Article  Google Scholar 

  140. 140.

    Shibata, M., Taniguchi, K., Uryū, K.: Merger of binary neutron stars with realistic equations of state in full general relativity. Phys. Rev. D 71(8), 084021 (2005). https://doi.org/10.1103/PhysRevD.71.084021

    ADS  Article  Google Scholar 

  141. 141.

    Shibata, M., Uryū, K.: Simulation of merging binary neutron stars in full general relativity: \(\Gamma =2\) case. Phys. Rev. D 61(6), 064001 (2000). https://doi.org/10.1103/PhysRevD.61.064001

    ADS  Article  Google Scholar 

  142. 142.

    Siegel, D.M.: GW170817—the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process. Eur. Phys. J. A 55(11), 203 (2019). https://doi.org/10.1140/epja/i2019-12888-9

    ADS  Article  Google Scholar 

  143. 143.

    Siegel, D.M., Ciolfi, R.: Electromagnetic emission from long-lived binary neutron star merger remnants. I. Formulation of the problem. Astrophys. J. 819, 14 (2016). https://doi.org/10.3847/0004-637X/819/1/14

    ADS  Article  Google Scholar 

  144. 144.

    Siegel, D.M., Ciolfi, R.: Electromagnetic emission from long-lived binary neutron star merger remnants. II. Lightcurves and spectra. Astrophys. J. 819, 15 (2016). https://doi.org/10.3847/0004-637X/819/1/15

    ADS  Article  Google Scholar 

  145. 145.

    Siegel, D.M., Ciolfi, R., Harte, A.I., Rezzolla, L.: Magnetorotational instability in relativistic hypermassive neutron stars. Phys. Rev. D(R) 87(12), 121302 (2013). https://doi.org/10.1103/PhysRevD.87.121302

    ADS  Article  Google Scholar 

  146. 146.

    Siegel, D.M., Ciolfi, R., Rezzolla, L.: Magnetically driven winds from differentially rotating neutron stars and X-Ray afterglows of short gamma-ray bursts. Astrophys. J. Lett. 785(1), L6 (2014). https://doi.org/10.1088/2041-8205/785/1/L6

    ADS  Article  Google Scholar 

  147. 147.

    Siegel, D.M., Metzger, B.D.: Three-dimensional general-relativistic magnetohydrodynamic simulations of remnant accretion disks from neutron star mergers: outflows and r -process nucleosynthesis. Phys. Rev. Lett. 119(23), 231102 (2017). https://doi.org/10.1103/PhysRevLett.119.231102

    ADS  Article  Google Scholar 

  148. 148.

    Siegel, D.M., Metzger, B.D.: Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers. Astrophys. J. 858(1), 52 (2018). https://doi.org/10.3847/1538-4357/aabaec

    ADS  Article  Google Scholar 

  149. 149.

    Smartt, S.J., Chen, T.W., Jerkstrand, A., Coughlin, M., Kankare, E., Sim, S.A., Fraser, M., Inserra, C., Maguire, K., Chambers, K.C., et al.: A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678), 75 (2017). https://doi.org/10.1038/nature24303

    ADS  Article  Google Scholar 

  150. 150.

    Stergioulas, N., Bauswein, A., Zagkouris, K., Janka, H.T.: Gravitational waves and non-axisymmetric oscillation modes in mergers of compact object binaries. Mon. Not. R. Astron. Soc. 418(1), 427 (2011). https://doi.org/10.1111/j.1365-2966.2011.19493.x

    ADS  Article  Google Scholar 

  151. 151.

    Symbalisty, E., Schramm, D.N.: Neutron star collisions and the r-process. Astrophys. Lett. 22, 143 (1982)

    ADS  Google Scholar 

  152. 152.

    Takami, K., Rezzolla, L., Baiotti, L.: Constraining the equation of state of neutron stars from binary mergers. Phys. Rev. Lett. 113(9), 091104 (2014). https://doi.org/10.1103/PhysRevLett.113.091104

    ADS  Article  Google Scholar 

  153. 153.

    Tanaka, M., Hotokezaka, K.: Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 775(2), 113 (2013). https://doi.org/10.1088/0004-637X/775/2/113

    ADS  Article  Google Scholar 

  154. 154.

    Tanvir, N.R., Levan, A.J., Fruchter, A.S., Hjorth, J., Hounsell, R.A., Wiersema, K., Tunnicliffe, R.L.: A ‘kilonova’ associated with the short-duration \(\gamma \)-ray burst GRB 130603B. Nature 500, 547 (2013). https://doi.org/10.1038/nature12505

    ADS  Article  Google Scholar 

  155. 155.

    Thorne, K.S., Price, R.H., MacDonald, D.A.: Black Holes: The Membrane Paradigm. Yale University Press, London (1986)

    MATH  Google Scholar 

  156. 156.

    Troja, E., Piro, L., van Eerten, H., Wollaeger, R.T., Im, M., Fox, O.D., Butler, N.R., Cenko, S.B., Sakamoto, T., Fryer, C.L., et al.: The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71 (2017). https://doi.org/10.1038/nature24290

    ADS  Article  Google Scholar 

  157. 157.

    Tsokaros, A., Ruiz, M., Paschalidis, V., Shapiro, S.L., Uryū, K.: Effect of spin on the inspiral of binary neutron stars. Phys. Rev. D 100(2), 024061 (2019). https://doi.org/10.1103/PhysRevD.100.024061

    ADS  Article  Google Scholar 

  158. 158.

    Valenti, S., Sand, D.J., Yang, S., Cappellaro, E., Tartaglia, L., Corsi, A., Jha, S.W., Reichart, D.E., Haislip, J., Kouprianov, V.: The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. Lett. 848(2), L24 (2017). https://doi.org/10.3847/2041-8213/aa8edf

    ADS  Article  Google Scholar 

  159. 159.

    Villar, V.A., Guillochon, J., Berger, E., Metzger, B.D., Cowperthwaite, P.S., Nicholl, M., Alexander, K.D., Blanchard, P.K., Chornock, R., Eftekhari, T., et al.: The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851(1), L21 (2017). https://doi.org/10.3847/2041-8213/aa9c84

    ADS  Article  Google Scholar 

  160. 160.

    Yang, H., Paschalidis, V., Yagi, K., Lehner, L., Pretorius, F., Yunes, N.: Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking. Phys. Rev. D 97(2), 024049 (2018). https://doi.org/10.1103/PhysRevD.97.024049

    ADS  MathSciNet  Article  Google Scholar 

  161. 161.

    Yu, Y.W., Zhang, B., Gao, H.: Bright “merger-nova” from the remnant of a neutron star binary merger: a signature of a newly born, massive, millisecond magnetar. Astrophys. J. Lett. 776, L40 (2013). https://doi.org/10.1088/2041-8205/776/2/L40

    ADS  Article  Google Scholar 

  162. 162.

    Zhang, B., Mészáros, P.: Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar. Astrophys. J. Lett. 552, L35 (2001). https://doi.org/10.1086/320255

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank Daniele Viganò, David Radice, Bruno Giacomazzo, Wolfgang Kastaun, Davide Lazzati, and Albino Perego for useful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Riccardo Ciolfi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: Binary Neutron Star mergers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciolfi, R. The key role of magnetic fields in binary neutron star mergers. Gen Relativ Gravit 52, 59 (2020). https://doi.org/10.1007/s10714-020-02714-x

Download citation

Keywords

  • Binary neutron stars
  • Gamma-ray bursts
  • Gravitational wave sources
  • Magnetohydrodynamical simulations