Abstract
The first multimessenger observation of a binary neutron star (BNS) merger in August 2017 demonstrated the huge scientific potential of these extraordinary events. This breakthrough led to a number of discoveries and provided the best evidence that BNS mergers can launch short gamma-ray burst (SGRB) jets and are responsible for a copious production of heavy r-process elements. On the other hand, the details of the merger and post-merger dynamics remain only poorly constrained, leaving behind important open questions. Numerical relativity simulations are a powerful tool to unveil the physical processes at work in a BNS merger and as such they offer the best chance to improve our ability to interpret the corresponding gravitational wave (GW) and electromagnetic emission. Here, we review the current theoretical investigation on BNS mergers based on general relativistic magnetohydrodynamics simulations, paying special attention to the magnetic field as a crucial ingredient. First, we discuss the evolution, amplification, and emerging structure of magnetic fields in BNS mergers. Then, we consider their impact on various critical aspects: (i) jet formation and the connection with SGRBs, (ii) matter ejection, r-process nucleosynthesis, and radioactively-powered kilonova transients, and (iii) post-merger GW emission.
Similar content being viewed by others
Notes
Isolated NSs with much stronger magnetic fields exist, up to the typical \(10^{14}{-}10^{15}\,\hbox {G}\) of magnetars. However, there is no evidence for such high magnetizations in BNSs.
Such an outflow is naturally explained in terms of a “structured jet” composed by a highly collimated and energetic core surrounded by a less energetic wide-angle cocoon, where the latter is formed via the early interaction of the incipient jet with the baryon-polluted environment around the merger site (e.g., [79]).
Although we restrict the present discussion to BNS mergers, an accreting BH with the right properties to power a SGRB could also result from a NS–BH merger (see, e.g., [107] and refs. therein).
The interaction between the outflow and the dense surrounding environment contributes to the differences in terms of collimation with respect to the findings of, e.g., [129] (where the evolution also lasts over 200 ms).
After the present review was submitted, Ref. [98] further confirmed that superimposing by hand an extended dipolar magnetic field on a differentially rotating NS produces a collimated outflow, as found, e.g., in [75, 129, 139, 146]. In this case, the initial data were directly taken from the outcome of a nonmagnetized BNS merger simulation at 17 ms after merger and neutrino radiation was included. While this represents an important step forward with respect to studies like [75, 129, 139, 146], a main caveat remains: there is no guarantee that collimated outflows with properties similar to those reported in [98], which were obtained by imposing an ad hoc dipolar field at an arbitrary time, could also be obtained for magnetized BNSs going through the full merger process.
References
Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85 (2017). https://doi.org/10.1038/nature24471
Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c
Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101
Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9
Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., Adya, V.B., et al.: Properties of the binary neutron star merger GW170817. Phys. Rev. X 9(1), 011001 (2019). https://doi.org/10.1103/PhysRevX.9.011001
Alexander, K.D., Berger, E., Fong, W., Williams, P.K.G., Guidorzi, C., Margutti, R., Metzger, B.D., Annis, J., Blanchard, P.K., Brout, D., et al.: The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys. J. Lett. 848, L21 (2017). https://doi.org/10.3847/2041-8213/aa905d
Alexander, K.D., Margutti, R., Blanchard, P.K., Fong, W., Berger, E., Hajela, A., Eftekhari, T., Chornock, R., Cowperthwaite, P.S., Giannios, D., et al.: A decline in the X-Ray through radio emission from GW170817 continues to support an off-axis structured jet. Astrophys. J. Lett. 863, L18 (2018). https://doi.org/10.3847/2041-8213/aad637
Aloy, M.A., Janka, H.T., Müller, E.: Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts. Astron. Astrophys. 436(1), 273 (2005). https://doi.org/10.1051/0004-6361:20041865
Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D., Palenzuela, C., Tohline, J.E.: Magnetized neutron-star mergers and gravitational-wave signals. Phys. Rev. Lett. 100(19), 191101 (2008). https://doi.org/10.1103/PhysRevLett.100.191101
Arcavi, I., Hosseinzadeh, G., Howell, D.A., McCully, C., Poznanski, D., Kasen, D., Barnes, J., Zaltzman, M., Vasylyev, S., Maoz, D., et al.: Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551(7678), 64 (2017). https://doi.org/10.1038/nature24291
Baiotti, L., Rezzolla, L.: Binary neutron star mergers: a review of Einstein’s richest laboratory. Rep. Prog. Phys. 80(9), 096901 (2017). https://doi.org/10.1088/1361-6633/aa67bb
Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. Astrophys. J. 376, 214 (1991). https://doi.org/10.1086/170270
Barnes, J., Kasen, D.: Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775(1), 18 (2013). https://doi.org/10.1088/0004-637X/775/1/18
Barthelmy, S.D., Chincarini, G., Burrows, D.N., Gehrels, N., Covino, S., Moretti, A., Romano, P., O’Brien, P.T., Sarazin, C.L., Kouveliotou, C., et al.: An origin for short \(\gamma \)-ray bursts unassociated with current star formation. Nature 438, 994 (2005). https://doi.org/10.1038/nature04392
Bauswein, A., Goriely, S., Janka, H.T.: Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys. J. 773(1), 78 (2013). https://doi.org/10.1088/0004-637X/773/1/78
Bauswein, A., Janka, H.T.: Measuring neutron-star properties via gravitational waves from neutron-star mergers. Phys. Rev. Lett. 108(1), 011101 (2012). https://doi.org/10.1103/PhysRevLett.108.011101
Berger, E.: Short-duration gamma-ray bursts. Ann. Rev. Astron. Astrophys. 52, 43 (2014). https://doi.org/10.1146/annurev-astro-081913-035926
Berger, E., Fong, W., Chornock, R.: An r-process kilonova associated with the short-hard GRB 130603B. Astrophys. J. Lett. 774, L23 (2013). https://doi.org/10.1088/2041-8205/774/2/L23
Bernuzzi, S., Dietrich, T., Nagar, A.: Modeling the complete gravitational wave spectrum of neutron star mergers. Phys. Rev. Lett. 115(9), 091101 (2015). https://doi.org/10.1103/PhysRevLett.115.091101
Bilous, A.V., Watts, A.L., Harding, A.K., Riley, T.E., Arzoumanian, Z., Bogdanov, S., Gendreau, K.C., Ray, P.S., Guillot, S., Ho, W.C.G., et al.: A NICER view of PSR J0030+0451: evidence for a global-scale multipolar magnetic field. Astrophys. J. Lett. 887(1), L23 (2019). https://doi.org/10.3847/2041-8213/ab53e7
Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433 (1977). https://doi.org/10.1093/mnras/179.3.433
Carrasco, F., Viganò, D., Palenzuela, C.: Gradient subgrid-scale model for relativistic MHD large-eddy simulations. Phys. Rev. D 101(6), 063003 (2020). https://doi.org/10.1103/PhysRevD.101.063003
Ciolfi, R.: Short gamma-ray burst central engines. Int. J. Mod. Phys. D 27, 1842004 (2018). https://doi.org/10.1142/S021827181842004X
Ciolfi, R.: Binary neutron star mergers after GW170817 (2020). arXiv e-prints arXiv:2005.02964
Ciolfi, R.: Collimated outflows from long-lived binary neutron star merger remnants. Mon. Not. R. Astron. Soc. Lett. 495(1), L66 (2020). https://doi.org/10.1093/mnrasl/slaa062
Ciolfi, R., Kalinani, J.V.: Magnetically driven baryon winds from binary neutron star merger remnants and the blue kilonova of August 2017 (2020). arXiv e-prints arXiv:2004.11298
Ciolfi, R., Kastaun, W., Giacomazzo, B., Endrizzi, A., Siegel, D.M., Perna, R.: General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star. Phys. Rev. D 95(6), 063016 (2017). https://doi.org/10.1103/PhysRevD.95.063016
Ciolfi, R., Kastaun, W., Kalinani, J.V., Giacomazzo, B.: First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger. Phys. Rev. D 100(2), 023005 (2019). https://doi.org/10.1103/PhysRevD.100.023005
Ciolfi, R., Rezzolla, L.: Twisted-torus configurations with large toroidal magnetic fields in relativistic stars. Mon. Not. R. Astron. Soc. Lett. 435, L43 (2013). https://doi.org/10.1093/mnrasl/slt092
Ciolfi, R., Siegel, D.M.: Short gamma-ray bursts in the “time-reversal” scenario. Astrophys. J. Lett. 798, L36 (2015). https://doi.org/10.1088/2041-8205/798/2/L36
Clark, J., Bauswein, A., Cadonati, L., Janka, H.T., Pankow, C., Stergioulas, N.: Prospects for high frequency burst searches following binary neutron star coalescence with advanced gravitational wave detectors. Phys. Rev. D 90(6), 062004 (2014). https://doi.org/10.1103/PhysRevD.90.062004
Coulter, D.A., Foley, R.J., Kilpatrick, C.D., Drout, M.R., Piro, A.L., Shappee, B.J., Siebert, M.R., Simon, J.D., Ulloa, N., Kasen, D., et al.: Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358(6370), 1556 (2017). https://doi.org/10.1126/science.aap9811
Dessart, L., Ott, C.D., Burrows, A., Rosswog, S., Livne, E.: Neutrino signatures and the neutrino-driven wind in binary neutron star mergers. Astrophys. J. 690(2), 1681 (2009). https://doi.org/10.1088/0004-637X/690/2/1681
Dionysopoulou, K., Alic, D., Rezzolla, L.: General-relativistic resistive-magnetohydrodynamic simulations of binary neutron stars. Phys. Rev. D 92(8), 084064 (2015). https://doi.org/10.1103/PhysRevD.92.084064
Duez, M.D., Liu, Y.T., Shapiro, S.L., Shibata, M., Stephens, B.C.: Collapse of magnetized hypermassive neutron stars in general relativity. Phys. Rev. Lett. 96(3), 031101 (2006). https://doi.org/10.1103/PhysRevLett.96.031101
Duez, M.D., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: General relativistic hydrodynamics with viscosity: Contraction, catastrophic collapse, and disk formation in hypermassive neutron stars. Phys. Rev. D 69(10), 104030 (2004). https://doi.org/10.1103/PhysRevD.69.104030
Duez, M.D., Zlochower, Y.: Numerical relativity of compact binaries in the 21st century. Rep. Prog. Phys. 82(1), 016902 (2019). https://doi.org/10.1088/1361-6633/aadb16
East, W.E., Paschalidis, V., Pretorius, F., Tsokaros, A.: Binary neutron star mergers: effects of spin and post-merger dynamics. Phys. Rev. D 100(12), 124042 (2019). https://doi.org/10.1103/PhysRevD.100.124042
Eichler, D., Livio, M., Piran, T., Schramm, D.N.: Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126 (1989). https://doi.org/10.1038/340126a0
Endrizzi, A., Ciolfi, R., Giacomazzo, B., Kastaun, W., Kawamura, T.: General relativistic magnetohydrodynamic simulations of binary neutron star mergers with the APR4 equation of state. Class. Quantum Grav. 33(16), 164001 (2016). https://doi.org/10.1088/0264-9381/33/16/164001
Faber, J.A., Rasio, F.A.: Binary neutron star mergers. Liv. Rev. Rel. 15(1), 8 (2012). https://doi.org/10.12942/lrr-2012-8
Fernández, R., Metzger, B.D.: Delayed outflows from black hole accretion tori following neutron star binary coalescence. Mon. Not. R. Astron. Soc. 435(1), 502 (2013). https://doi.org/10.1093/mnras/stt1312
Fernández, R., Tchekhovskoy, A., Quataert, E., Foucart, F., Kasen, D.: Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts. Mon. Not. R. Astron. Soc. 482(3), 3373 (2019). https://doi.org/10.1093/mnras/sty2932
Foucart, F., Haas, R., Duez, M.D., O’Connor, E., Ott, C.D., Roberts, L., Kidder, L.E., Lippuner, J., Pfeiffer, H.P., Scheel, M.A.: Low mass binary neutron star mergers: gravitational waves and neutrino emission. Phys. Rev. D 93(4), 044019 (2016). https://doi.org/10.1103/PhysRevD.93.044019
Fox, D.B., Frail, D.A., Price, P.A., Kulkarni, S.R., Berger, E., Piran, T., Soderberg, A.M., Cenko, S.B., Cameron, P.B., Gal-Yam, A., et al.: The afterglow of GRB050709 and the nature of the short-hard gamma-ray bursts. Nature 437, 845 (2005)
Fujibayashi, S., Kiuchi, K., Nishimura, N., Sekiguchi, Y., Shibata, M.: Mass ejection from the remnant of a binary neutron star merger: viscous-radiation hydrodynamics study. Astrophys. J. 860(1), 64 (2018). https://doi.org/10.3847/1538-4357/aabafd
Fujibayashi, S., Shibata, M., Wanajo, S., Kiuchi, K., Kyutoku, K., Sekiguchi, Y.: Mass ejection from disks surrounding a low-mass black hole: viscous neutrino-radiation hydrodynamics simulation in full general relativity. Phys. Rev. D 101(8), 083029 (2020). https://doi.org/10.1103/PhysRevD.101.083029
Galama, T.J., Vreeswijk, P.M., van Paradijs, J., Kouveliotou, C., Augusteijn, T., Böhnhardt, H., Brewer, J.P., Doublier, V., Gonzalez, J.F., Leibundgut, B., et al.: An unusual supernova in the error box of the \(\gamma \)-ray burst of 25 April 1998. Nature 395, 670 (1998). https://doi.org/10.1038/27150
Gao, W.H., Fan, Y.Z.: Short-living supermassive magnetar model for the early X-ray flares following short GRBs. Chin. J. Astron. Astrophys. 6, 513 (2006). https://doi.org/10.1088/1009-9271/6/5/01
Gehrels, N., Chincarini, G., Giommi, P., Mason, K.O., Nousek, J.A., Wells, A.A., White, N.E., Barthelmy, S.D., Burrows, D.N., Cominsky, L.R., et al.: The swift gamma-ray burst mission. Astrophys. J. 611, 1005 (2004). https://doi.org/10.1086/422091
Gehrels, N., Sarazin, C.L., O’Brien, P.T., Zhang, B., Barbier, L., Barthelmy, S.D., Blustin, A., Burrows, D.N., Cannizzo, J., Cummings, J.R., et al.: A short \(\gamma \)-ray burst apparently associated with an elliptical galaxy at redshift \(z = 0.225\). Nature 437, 851 (2005). https://doi.org/10.1038/nature04142
Ghirlanda, G., Salafia, O.S., Paragi, Z., Giroletti, M., Yang, J., Marcote, B., Blanchard, J., Agudo, I., An, T., Bernardini, M.G., et al.: Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363(6430), 968 (2019). https://doi.org/10.1126/science.aau8815
Giacomazzo, B., Rezzolla, L., Baiotti, L.: Can magnetic fields be detected during the inspiral of binary neutron stars? Mon. Not. R. Astron. Soc. 399, L164 (2009). https://doi.org/10.1111/j.1745-3933.2009.00745.x
Giacomazzo, B., Rezzolla, L., Baiotti, L.: Accurate evolutions of inspiralling and magnetized neutron stars: equal-mass binaries. Phys. Rev. D 83(4), 044014 (2011). https://doi.org/10.1103/PhysRevD.83.044014
Giacomazzo, B., Zrake, J., Duffell, P., MacFadyen, A.I., Perna, R.: Producing magnetar magnetic fields in the merger of binary neutron stars. Astrophys. J. 809(1), 39 (2015). https://doi.org/10.1088/0004-637X/809/1/39
Goldstein, A., Veres, P., Burns, E., Briggs, M.S., Hamburg, R., Kocevski, D., Wilson-Hodge, C.A., Preece, R.D., Poolakkil, S., Roberts, O.J., et al.: An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 848, L14 (2017). https://doi.org/10.3847/2041-8213/aa8f41
Grossman, D., Korobkin, O., Rosswog, S., Piran, T.: The long-term evolution of neutron star merger remnants—II. Radioactively powered transients. Mon. Not. R. Astron. Soc. 439(1), 757 (2014). https://doi.org/10.1093/mnras/stt2503
Hallinan, G., Corsi, A., Mooley, K.P., Hotokezaka, K., Nakar, E., Kasliwal, M.M., Kaplan, D.L., Frail, D.A., Myers, S.T., Murphy, T., et al.: A radio counterpart to a neutron star merger. Science 358, 1579 (2017). https://doi.org/10.1126/science.aap9855
Hanauske, M., Takami, K., Bovard, L., Rezzolla, L., Font, J.A., Galeazzi, F., Stöcker, H.: Rotational properties of hypermassive neutron stars from binary mergers. Phys. Rev. D 96(4), 043004 (2017). https://doi.org/10.1103/PhysRevD.96.043004
Hinderer, T., Nissanke, S., Foucart, F., Hotokezaka, K., Vincent, T., Kasliwal, M., Schmidt, P., Williamson, A.R., Nichols, D.A., Duez, M.D., et al.: Distinguishing the nature of comparable-mass neutron star binary systems with multimessenger observations: GW170817 case study. Phys. Rev. D 100(6), 063021 (2019). https://doi.org/10.1103/PhysRevD.100.063021
Hotokezaka, K., Beniamini, P., Piran, T.: Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int. J. Mod. Phys. D 27(13), 1842005 (2018). https://doi.org/10.1142/S0218271818420051
Hotokezaka, K., Kiuchi, K., Kyutoku, K., Muranushi, T., Sekiguchi, Y.I., Shibata, M., Taniguchi, K.: Remnant massive neutron stars of binary neutron star mergers: evolution process and gravitational waveform. Phys. Rev. D 88(4), 044026 (2013). https://doi.org/10.1103/PhysRevD.88.044026
Hotokezaka, K., Kiuchi, K., Kyutoku, K., Okawa, H., Sekiguchi, Y.I., Shibata, M., Taniguchi, K.: Mass ejection from the merger of binary neutron stars. Phys. Rev. D 87(2), 024001 (2013). https://doi.org/10.1103/PhysRevD.87.024001
Just, O., Bauswein, A., Ardevol Pulpillo, R., Goriely, S., Janka, H.T.: Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon. Not. R. Astron. Soc. 448(1), 541 (2015). https://doi.org/10.1093/mnras/stv009
Just, O., Obergaulinger, M., Janka, H.T., Bauswein, A., Schwarz, N.: Neutron-star merger ejecta as obstacles to neutrino-powered jets of gamma-ray bursts. Astrophys. J. Lett. 816, L30 (2016). https://doi.org/10.3847/2041-8205/816/2/L30
Kasen, D., Badnell, N.R., Barnes, J.: Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774(1), 25 (2013). https://doi.org/10.1088/0004-637X/774/1/25
Kasen, D., Metzger, B., Barnes, J., Quataert, E., Ramirez-Ruiz, E.: Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551(7678), 80 (2017). https://doi.org/10.1038/nature24453
Kastaun, W., Ciolfi, R., Giacomazzo, B.: Structure of stable binary neutron star merger remnants: a case study. Phys. Rev. D 94(4), 044060 (2016). https://doi.org/10.1103/PhysRevD.94.044060
Kastaun, W., Galeazzi, F.: Properties of hypermassive neutron stars formed in mergers of spinning binaries. Phys. Rev. D 91, 064027 (2015). https://doi.org/10.1103/PhysRevD.91.064027
Kawaguchi, K., Shibata, M., Tanaka, M.: Radiative transfer simulation for the optical and near-infrared electromagnetic counterparts to GW170817. Astrophys. J. Lett. 865(2), L21 (2018). https://doi.org/10.3847/2041-8213/aade02
Kawamura, T., Giacomazzo, B., Kastaun, W., Ciolfi, R., Endrizzi, A., Baiotti, L., Perna, R.: Binary neutron star mergers and short gamma-ray bursts: effects of magnetic field orientation, equation of state, and mass ratio. Phys. Rev. D 94, 064012 (2016). https://doi.org/10.1103/PhysRevD.94.064012
Kiuchi, K., Cerdá-Durán, P., Kyutoku, K., Sekiguchi, Y., Shibata, M.: Efficient magnetic-field amplification due to the Kelvin–Helmholtz instability in binary neutron star mergers. Phys. Rev. D 92(12), 124034 (2015). https://doi.org/10.1103/PhysRevD.92.124034
Kiuchi, K., Kyutoku, K., Sekiguchi, Y., Shibata, M.: Global simulations of strongly magnetized remnant massive neutron stars formed in binary neutron star mergers. Phys. Rev. D 97(12), 124039 (2018). https://doi.org/10.1103/PhysRevD.97.124039
Kiuchi, K., Kyutoku, K., Sekiguchi, Y., Shibata, M., Wada, T.: High resolution numerical relativity simulations for the merger of binary magnetized neutron stars. Phys. Rev. D 90(4), 041502 (2014). https://doi.org/10.1103/PhysRevD.90.041502
Kiuchi, K., Kyutoku, K., Shibata, M.: Three-dimensional evolution of differentially rotating magnetized neutron stars. Phys. Rev. D 86(6), 064008 (2012). https://doi.org/10.1103/PhysRevD.86.064008
Kulkarni, S.R.: Modeling supernova-like explosions associated with gamma-ray bursts with short durations (2005). arXiv e-prints arXiv:astro-ph/0510256
Kumar, P., Zhang, B.: The physics of gamma-ray bursts and relativistic jets. Phys. Rep. 561, 1 (2015). https://doi.org/10.1016/j.physrep.2014.09.008
Lattimer, J.M., Schramm, D.N.: Black-hole-neutron-star collisions. Astrophys. J. Lett. 192, L145 (1974). https://doi.org/10.1086/181612
Lazzati, D., Perna, R., Morsony, B.J., Lopez-Camara, D., Cantiello, M., Ciolfi, R., Giacomazzo, B., Workman, J.C.: Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817. Phys. Rev. Lett. 120(24), 241103 (2018). https://doi.org/10.1103/PhysRevLett.120.241103
Li, L.X., Paczyński, B.: Transient events from neutron star mergers. Astrophys. J. 507, L59 (1998). https://doi.org/10.1086/311680
Lippuner, J., Roberts, L.F.: r-Process lanthanide production and heating rates in kilonovae. Astrophys. J. 815(2), 82 (2015). https://doi.org/10.1088/0004-637X/815/2/82
Liu, Y.T., Shapiro, S.L., Etienne, Z.B., Taniguchi, K.: General relativistic simulations of magnetized binary neutron star mergers. Phys. Rev. D 78(2), 024012 (2008). https://doi.org/10.1103/PhysRevD.78.024012
Lorimer, D.R.: Binary and millisecond pulsars. Liv. Rev. Rel. 11, 8 (2008). https://doi.org/10.12942/lrr-2008-8
Lü, H.J., Zhang, B., Lei, W.H., Li, Y., Lasky, P.D.: The millisecond magnetar central engine in short GRBs. Astrophys. J. 805, 89 (2015). https://doi.org/10.1088/0004-637X/805/2/89
Lyman, J.D., Lamb, G.P., Levan, A.J., Mandel, I., Tanvir, N.R., Kobayashi, S., Gompertz, B., Hjorth, J., Fruchter, A.S., Kangas, T., et al.: The optical afterglow of the short gamma-ray burst associated with GW170817. Nat. Astr. 2, 751 (2018). https://doi.org/10.1038/s41550-018-0511-3
Margutti, R., Berger, E., Fong, W., Guidorzi, C., Alexander, K.D., Metzger, B.D., Blanchard, P.K., Cowperthwaite, P.S., Chornock, R., Eftekhari, T., et al.: The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-Ray emission from an off-axis jet. Astrophys. J. Lett. 848, L20 (2017). https://doi.org/10.3847/2041-8213/aa9057
Martin, D., Perego, A., Arcones, A., Thielemann, F.K., Korobkin, O., Rosswog, S.: Neutrino-driven winds in the aftermath of a neutron star merger: nucleosynthesis and electromagnetic transients. Astrophys. J. 813(1), 2 (2015). https://doi.org/10.1088/0004-637X/813/1/2
Metzger, B.D.: Kilonovae. Liv. Rev. Rel. 23(1), 1 (2019). https://doi.org/10.1007/s41114-019-0024-0
Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.: Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650 (2010). https://doi.org/10.1111/j.1365-2966.2010.16864.x
Metzger, B.D., Piro, A.L.: Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars. Mon. Not. R. Astron. Soc. 439, 3916 (2014). https://doi.org/10.1093/mnras/stu247
Metzger, B.D., Quataert, E., Thompson, T.A.: Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 385, 1455 (2008). https://doi.org/10.1111/j.1365-2966.2008.12923.x
Metzger, B.D., Thompson, T.A., Quataert, E.: A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. Lett. 856(2), 101 (2018). https://doi.org/10.3847/1538-4357/aab095
Meyer, B.S.: Decompression of initially cold neutron star matter: a mechanism for the r-process? Astrophys. J. 343, 254 (1989). https://doi.org/10.1086/167702
Mochkovitch, R., Hernanz, M., Isern, J., Martin, X.: Gamma-ray bursts as collimated jets from neutron star/black hole mergers. Nature 361, 236 (1993). https://doi.org/10.1038/361236a0
Mooley, K.P., Deller, A.T., Gottlieb, O., Nakar, E., Hallinan, G., Bourke, S., Frail, D.A., Horesh, A., Corsi, A., Hotokezaka, K.: Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561, 355 (2018). https://doi.org/10.1038/s41586-018-0486-3
Mooley, K.P., Nakar, E., Hotokezaka, K., Hallinan, G., Corsi, A., Frail, D.A., Horesh, A., Murphy, T., Lenc, E., Kaplan, D.L., et al.: A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature 554, 207 (2018). https://doi.org/10.1038/nature25452
Most, E.R., Papenfort, L.J., Rezzolla, L.: Beyond second-order convergence in simulations of magnetized binary neutron stars with realistic microphysics. Mon. Not. R. Astron. Soc. 490(3), 3588 (2019). https://doi.org/10.1093/mnras/stz2809
Mösta, P., Radice, D., Haas, R., Schnetter, E., Bernuzzi, S.: A magnetar engine for short GRBs and kilonovae (2020). arXiv e-prints arXiv:2003.06043
Narayan, R., Paczynski, B., Piran, T.: Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. Lett. 395, L83 (1992). https://doi.org/10.1086/186493
Nathanail, A.: Binary neutron star and short gamma-ray burst simulations in light of GW170817. Galaxies 6(4), 119 (2018). https://doi.org/10.3390/galaxies6040119
Nedora, V., Bernuzzi, S., Radice, D., Perego, A., Endrizzi, A., Ortiz, N.: Spiral-wave wind for the blue kilonova. Astrophys. J. Lett. 886(2), L30 (2019). https://doi.org/10.3847/2041-8213/ab5794
Neilsen, D., Liebling, S.L., Anderson, M., Lehner, L., O’Connor, E., Palenzuela, C.: Magnetized neutron stars with realistic equations of state and neutrino cooling. Phys. Rev. D 89(10), 104029 (2014). https://doi.org/10.1103/PhysRevD.89.104029
Oganesyan, G., Ascenzi, S., Branchesi, M., Salafia, O.S., Dall’Osso, S., Ghirlanda, G.: Structured jets and X-Ray plateaus in gamma-ray burst phenomena. Astrophys. J. 893(2), 88 (2020). https://doi.org/10.3847/1538-4357/ab8221
Paczynski, B.: Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 308, L43 (1986). https://doi.org/10.1086/184740
Palenzuela, C., Lehner, L., Ponce, M., Liebling, S.L., Anderson, M., Neilsen, D., Motl, P.: Electromagnetic and gravitational outputs from binary-neutron-star coalescence. Phys. Rev. Lett. 111(6), 061105 (2013). https://doi.org/10.1103/PhysRevLett.111.061105
Palenzuela, C., Liebling, S.L., Neilsen, D., Lehner, L., Caballero, O.L., O’Connor, E., Anderson, M.: Effects of the microphysical equation of state in the mergers of magnetized neutron stars with neutrino cooling. Phys. Rev. D 92(4), 044045 (2015). https://doi.org/10.1103/PhysRevD.92.044045
Paschalidis, V., Ruiz, M., Shapiro, S.L.: Relativistic simulations of black hole-neutron star coalescence: the jet emerges. Astrophys. J. Lett. 806, L14 (2015). https://doi.org/10.1088/2041-8205/806/1/L14
Paschalidis, V.: General relativistic simulations of compact binary mergers as engines for short gamma-ray bursts. Class. Quantum Grav. 34(8), 084002 (2017). https://doi.org/10.1088/1361-6382/aa61ce
Paschalidis, V., Stergioulas, N.: Rotating stars in relativity. Liv. Rev. Rel. 20(1), 7 (2017). https://doi.org/10.1007/s41114-017-0008-x
Paschalidis, V., Ruiz, M.: Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse? Phys. Rev. D 100(4), 043001 (2019). https://doi.org/10.1103/PhysRevD.100.043001
Perego, A., Radice, D., Bernuzzi, S.: AT 2017gfo: an anisotropic and three-component kilonova counterpart of GW170817. Astrophys. J. Lett. 850(2), L37 (2017). https://doi.org/10.3847/2041-8213/aa9ab9
Perego, A., Rosswog, S., Cabezón, R.M., Korobkin, O., Käppeli, R., Arcones, A., Liebendörfer, M.: Neutrino-driven winds from neutron star merger remnants. Mon. Not. R. Astron. Soc. 443(4), 3134 (2014). https://doi.org/10.1093/mnras/stu1352
Perego, A., Yasin, H., Arcones, A.: Neutrino pair annihilation above merger remnants: implications of a long-lived massive neutron star. J. Phys. G: Nucl. Phys. 44(8), 084007 (2017). https://doi.org/10.1088/1361-6471/aa7bdc
Pian, E., D’Avanzo, P., Benetti, S., Branchesi, M., Brocato, E., Campana, S., Cappellaro, E., Covino, S., D’Elia, V., Fynbo, J.P.U., et al.: Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551(7678), 67 (2017). https://doi.org/10.1038/nature24298
Piran, T.: The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143 (2004). https://doi.org/10.1103/RevModPhys.76.1143
Ponce, M., Palenzuela, C., Lehner, L., Liebling, S.L.: Interaction of misaligned magnetospheres in the coalescence of binary neutron stars. Phys. Rev. D 90(4), 044007 (2014). https://doi.org/10.1103/PhysRevD.90.044007
Price, D.J., Rosswog, S.: Producing ultrastrong magnetic fields in neutron star mergers. Science 312(5774), 719 (2006). https://doi.org/10.1126/science.1125201
Radice, D.: General-relativistic large-eddy simulations of binary neutron star mergers. Astrophys. J. Lett. 838(1), L2 (2017). https://doi.org/10.3847/2041-8213/aa6483
Radice, D., Galeazzi, F., Lippuner, J., Roberts, L.F., Ott, C.D., Rezzolla, L.: Dynamical mass ejection from binary neutron star mergers. Mon. Not. R. Astron. Soc. 460(3), 3255 (2016). https://doi.org/10.1093/mnras/stw1227
Raithel, C.A.: Constraints on the neutron star equation of state from GW170817. Eur. Phys. J. A 55(5), 80 (2019). https://doi.org/10.1140/epja/i2019-12759-5
Rea, N., Esposito, P., Turolla, R., Israel, G.L., Zane, S., Stella, L., Mereghetti, S., Tiengo, A., Götz, D., Göğüs, E., et al.: A low-magnetic-field soft gamma repeater. Science 330(6006), 944 (2010). https://doi.org/10.1126/science.1196088
Rezzolla, L., Giacomazzo, B., Baiotti, L., Granot, J., Kouveliotou, C., Aloy, M.A.: The missing link: merging neutron stars naturally produce jet-like structures and can power short gamma-ray bursts. Astrophys. J. Lett. 732(11), L6 (2011). https://doi.org/10.1088/2041-8205/732/1/L6
Rosswog, S.: Mergers of neutron star-black hole binaries with small mass ratios: nucleosynthesis, gamma-ray bursts, and electromagnetic transients. Astrophys. J. 634, 1202 (2005). https://doi.org/10.1086/497062
Rowlinson, A., O’Brien, P.T., Metzger, B.D., Tanvir, N.R., Levan, A.J.: Signatures of magnetar central engines in short GRB light curves. Mon. Not. R. Astron. Soc. 430, 1061 (2013). https://doi.org/10.1093/mnras/sts683
Rowlinson, A., O’Brien, P.T., Tanvir, N.R., Zhang, B., Evans, P.A., Lyons, N., Levan, A.J., Willingale, R., Page, K.L., Onal, O., et al.: The unusual X-ray emission of the short Swift GRB 090515: evidence for the formation of a magnetar? Mon. Not. R. Astron. Soc. 409, 531 (2010). https://doi.org/10.1111/j.1365-2966.2010.17354.x
Ruffert, M., Janka, H.T.: Gamma-ray bursts from accreting black holes in neutron star mergers. Astron. Astrophys. 344, 573 (1999)
Ruiz, M., Lang, R.N., Paschalidis, V., Shapiro, S.L.: Binary neutron star mergers: a jet engine for short gamma-ray bursts. Astrophys. J. Lett. 824, L6 (2016). https://doi.org/10.3847/2041-8205/824/1/L6
Ruiz, M., Shapiro, S.L.: General relativistic magnetohydrodynamics simulations of prompt-collapse neutron star mergers: the absence of jets. Phys. Rev. D 96(8), 084063 (2017). https://doi.org/10.1103/PhysRevD.96.084063
Ruiz, M., Shapiro, S.L., Tsokaros, A.: GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys. Rev. D 97, 021501 (2018). https://doi.org/10.1103/PhysRevD.97.021501
Ruiz, M., Tsokaros, A., Paschalidis, V., Shapiro, S.L.: Effects of spin on magnetized binary neutron star mergers and jet launching. Phys. Rev. D 99(8), 084032 (2019). https://doi.org/10.1103/PhysRevD.99.084032
Ruiz, M., Tsokaros, A., Shapiro, S.L.: Magnetohydrodynamic simulations of binary neutron star mergers in general relativity: effects of magnetic field orientation on jet launching. Phys. Rev. D 101(6), 064042 (2020). https://doi.org/10.1103/PhysRevD.101.064042
Salafia, O.S., Ghirlanda, G., Ascenzi, S., Ghisellini, G.: On-axis view of GRB 170817A. Astron. Astrophys. 628, A18 (2019). https://doi.org/10.1051/0004-6361/201935831
Savchenko, V., Ferrigno, C., Kuulkers, E., Bazzano, A., Bozzo, E., Brandt, S., Chenevez, J., Courvoisier, T.J.L., Diehl, R., Domingo, A., et al.: INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. Lett. 848, L15 (2017). https://doi.org/10.3847/2041-8213/aa8f94
Sekiguchi, Y., Kiuchi, K., Kyutoku, K., Shibata, M.: Gravitational waves and neutrino emission from the merger of binary neutron stars. Phys. Rev. Lett. 107(5), 051102 (2011). https://doi.org/10.1103/PhysRevLett.107.051102
Sekiguchi, Y., Kiuchi, K., Kyutoku, K., Shibata, M., Taniguchi, K.: Dynamical mass ejection from the merger of asymmetric binary neutron stars: radiation-hydrodynamics study in general relativity. Phys. Rev. D 93(12), 124046 (2016). https://doi.org/10.1103/PhysRevD.93.124046
Shibata, M., Hotokezaka, K.: Merger and mass ejection of neutron star binaries. Ann. Rev. Nucl. Part. Sci. 69, 41 (2019). https://doi.org/10.1146/annurev-nucl-101918-023625
Shibata, M., Kiuchi, K.: Gravitational waves from remnant massive neutron stars of binary neutron star merger: viscous hydrodynamics effects. Phys. Rev. D 95(12), 123003 (2017). https://doi.org/10.1103/PhysRevD.95.123003
Shibata, M., Kiuchi, K., Sekiguchi, Y.I.: General relativistic viscous hydrodynamics of differentially rotating neutron stars. Phys. Rev. D 95(8), 083005 (2017). https://doi.org/10.1103/PhysRevD.95.083005
Shibata, M., Suwa, Y., Kiuchi, K., Ioka, K.: Afterglow of a binary neutron star merger. Astrophys. J. Lett. 734(2), L36 (2011). https://doi.org/10.1088/2041-8205/734/2/L36
Shibata, M., Taniguchi, K., Uryū, K.: Merger of binary neutron stars with realistic equations of state in full general relativity. Phys. Rev. D 71(8), 084021 (2005). https://doi.org/10.1103/PhysRevD.71.084021
Shibata, M., Uryū, K.: Simulation of merging binary neutron stars in full general relativity: \(\Gamma =2\) case. Phys. Rev. D 61(6), 064001 (2000). https://doi.org/10.1103/PhysRevD.61.064001
Siegel, D.M.: GW170817—the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process. Eur. Phys. J. A 55(11), 203 (2019). https://doi.org/10.1140/epja/i2019-12888-9
Siegel, D.M., Ciolfi, R.: Electromagnetic emission from long-lived binary neutron star merger remnants. I. Formulation of the problem. Astrophys. J. 819, 14 (2016). https://doi.org/10.3847/0004-637X/819/1/14
Siegel, D.M., Ciolfi, R.: Electromagnetic emission from long-lived binary neutron star merger remnants. II. Lightcurves and spectra. Astrophys. J. 819, 15 (2016). https://doi.org/10.3847/0004-637X/819/1/15
Siegel, D.M., Ciolfi, R., Harte, A.I., Rezzolla, L.: Magnetorotational instability in relativistic hypermassive neutron stars. Phys. Rev. D(R) 87(12), 121302 (2013). https://doi.org/10.1103/PhysRevD.87.121302
Siegel, D.M., Ciolfi, R., Rezzolla, L.: Magnetically driven winds from differentially rotating neutron stars and X-Ray afterglows of short gamma-ray bursts. Astrophys. J. Lett. 785(1), L6 (2014). https://doi.org/10.1088/2041-8205/785/1/L6
Siegel, D.M., Metzger, B.D.: Three-dimensional general-relativistic magnetohydrodynamic simulations of remnant accretion disks from neutron star mergers: outflows and r -process nucleosynthesis. Phys. Rev. Lett. 119(23), 231102 (2017). https://doi.org/10.1103/PhysRevLett.119.231102
Siegel, D.M., Metzger, B.D.: Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers. Astrophys. J. 858(1), 52 (2018). https://doi.org/10.3847/1538-4357/aabaec
Smartt, S.J., Chen, T.W., Jerkstrand, A., Coughlin, M., Kankare, E., Sim, S.A., Fraser, M., Inserra, C., Maguire, K., Chambers, K.C., et al.: A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678), 75 (2017). https://doi.org/10.1038/nature24303
Stergioulas, N., Bauswein, A., Zagkouris, K., Janka, H.T.: Gravitational waves and non-axisymmetric oscillation modes in mergers of compact object binaries. Mon. Not. R. Astron. Soc. 418(1), 427 (2011). https://doi.org/10.1111/j.1365-2966.2011.19493.x
Symbalisty, E., Schramm, D.N.: Neutron star collisions and the r-process. Astrophys. Lett. 22, 143 (1982)
Takami, K., Rezzolla, L., Baiotti, L.: Constraining the equation of state of neutron stars from binary mergers. Phys. Rev. Lett. 113(9), 091104 (2014). https://doi.org/10.1103/PhysRevLett.113.091104
Tanaka, M., Hotokezaka, K.: Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 775(2), 113 (2013). https://doi.org/10.1088/0004-637X/775/2/113
Tanvir, N.R., Levan, A.J., Fruchter, A.S., Hjorth, J., Hounsell, R.A., Wiersema, K., Tunnicliffe, R.L.: A ‘kilonova’ associated with the short-duration \(\gamma \)-ray burst GRB 130603B. Nature 500, 547 (2013). https://doi.org/10.1038/nature12505
Thorne, K.S., Price, R.H., MacDonald, D.A.: Black Holes: The Membrane Paradigm. Yale University Press, London (1986)
Troja, E., Piro, L., van Eerten, H., Wollaeger, R.T., Im, M., Fox, O.D., Butler, N.R., Cenko, S.B., Sakamoto, T., Fryer, C.L., et al.: The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71 (2017). https://doi.org/10.1038/nature24290
Tsokaros, A., Ruiz, M., Paschalidis, V., Shapiro, S.L., Uryū, K.: Effect of spin on the inspiral of binary neutron stars. Phys. Rev. D 100(2), 024061 (2019). https://doi.org/10.1103/PhysRevD.100.024061
Valenti, S., Sand, D.J., Yang, S., Cappellaro, E., Tartaglia, L., Corsi, A., Jha, S.W., Reichart, D.E., Haislip, J., Kouprianov, V.: The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. Lett. 848(2), L24 (2017). https://doi.org/10.3847/2041-8213/aa8edf
Villar, V.A., Guillochon, J., Berger, E., Metzger, B.D., Cowperthwaite, P.S., Nicholl, M., Alexander, K.D., Blanchard, P.K., Chornock, R., Eftekhari, T., et al.: The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851(1), L21 (2017). https://doi.org/10.3847/2041-8213/aa9c84
Yang, H., Paschalidis, V., Yagi, K., Lehner, L., Pretorius, F., Yunes, N.: Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking. Phys. Rev. D 97(2), 024049 (2018). https://doi.org/10.1103/PhysRevD.97.024049
Yu, Y.W., Zhang, B., Gao, H.: Bright “merger-nova” from the remnant of a neutron star binary merger: a signature of a newly born, massive, millisecond magnetar. Astrophys. J. Lett. 776, L40 (2013). https://doi.org/10.1088/2041-8205/776/2/L40
Zhang, B., Mészáros, P.: Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar. Astrophys. J. Lett. 552, L35 (2001). https://doi.org/10.1086/320255
Acknowledgements
We thank Daniele Viganò, David Radice, Bruno Giacomazzo, Wolfgang Kastaun, Davide Lazzati, and Albino Perego for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to a Topical Collection: Binary Neutron Star mergers.
Rights and permissions
About this article
Cite this article
Ciolfi, R. The key role of magnetic fields in binary neutron star mergers. Gen Relativ Gravit 52, 59 (2020). https://doi.org/10.1007/s10714-020-02714-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10714-020-02714-x