Visco-elastic cosmology for a sparkling universe?


We show the analogy between a generalization of the Rayleigh–Plesset equation of bubble dynamics including surface tension, elasticity and viscosity effects with a reformulation of the Friedmann–Lemaître set of equations describing the expansion of space in cosmology assuming a homogeneous and isotropic universe. By comparing both fluid and cosmic equations, we propose a bold generalization of the newly-derived cosmic equation mapping three continuum mechanics contributions. Conversely, the addition of a cosmological constant-like term in the fluid equation would lead also to a new phenomenology.

This is a preview of subscription content, access via your institution.


  1. 1.

    Banerjee, S., Danielsson, U., Dibitetto, G., Giri, S., Schillo, M.: Emergent de Sitter cosmology from decaying anti-de sitter space. Phys. Rev. Lett. 121(26), 261301 (2018)

    ADS  Article  Google Scholar 

  2. 2.

    Friedmann, A.: Über die Krümmung des Raumes. Z. Phys. A 10(1), 377–386 (1922)

    Article  Google Scholar 

  3. 3.

    Lemaître, G.: Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. 47, 49–59 (1927)

    MATH  Google Scholar 

  4. 4.

    Rayleigh, Lord: On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. 34, 94–98 (1917)

    Article  Google Scholar 

  5. 5.

    Minnaert, M.: On musical air-bubbles and the sounds of running water. Philos. Mag. Ser. 7 16(104), 235–248 (1933)

    Article  Google Scholar 

  6. 6.

    Plesset, M.S.: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949)

    Google Scholar 

  7. 7.

    Noltingk, B.E., Neppiras, E.A.: Cavitation produced by ultrasonics. Proc. Phys. Soc. Lond. Sect. B 63(9), 674 (1950)

    ADS  Article  Google Scholar 

  8. 8.

    Poritsky, H.: The collapse or growth of a spherical bubble or cavity in a viscous fluid. In: Proceedings of the First U. S. National Congress on Applied Mechanics, pp. 813–821 (1952)

  9. 9.

    Franc, J.-P., Michel, J.-M.: Fundamentals of Cavitation, vol. 76. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. 10.

    Chaline, J.: Analogie macroscopique et acousto-mécanique d’une microbulle. Application aux agents de contraste ultrasonore. PhD Thesis of the Tours University, France (2015)

  11. 11.

    Bini, D., Succi, S.: Analogy between capillary motion and Friedmann–Robertson–Walker cosmology. Europhys. Lett. 82(3), 34003 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Kolomeisky, E.B.: Natural analog to cosmology in basic condensed matter physics. Phys. Rev. B 100(14), 140301 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    Mancas, S.C., Rosu, H.C.: Evolution of spherical cavitation bubbles: parametric and closed-form solutions. Phys. Fluids 28(2), 022009 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    Rosu, H.C., Mancas, S.C., Chen, P.: Barotropic FRW cosmologies with Chiellini damping in comoving time. Mod. Phys. Lett. A 30(20), 1550100 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Mancas, S.: Cavitation of spherical bubbles with surface tension and viscosity: theory and experiments, Oral Presentation at Miami 2015: A Topical Conference on Elementary Particles Astrophysics, and Cosmology, Fort Lauderdale, Florida, USA, 16–22 Dec (2015)

  16. 16.

    Faraoni, V.: Analogy between equilibrium beach profiles and closed universes. Phys. Rev. Res. 1(3), 033002 (2019)

    Article  Google Scholar 

  17. 17.

    Faraoni, V.: Analogy between freezing lakes and the cosmic radiation era. Phys. Rev. Res. 2, 013187 (2020)

    Article  Google Scholar 

  18. 18.

    Novosyadlyj, B.: Century of \(\Lambda \). Eur. Phys. J. H 43(3), 267–280 (2018)

    Article  Google Scholar 

  19. 19.

    Knobloch, E., Krechetnikov, R.: Problems on time-varying domains: formulation, dynamics, and challenges. Acta Appl. Math. 137(1), 123–157 (2015)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Sahni, V., Krasiński, A.: Republication of: the cosmological constant and the theory of elementary particles (By Ya. B. Zeldovich). Gen. Relativ. Gravity 40, 1557–1591 (2008)

    ADS  Article  Google Scholar 

  21. 21.

    Da̧browski, M.P., Stachowiak, T.: Phantom Friedmann cosmologies and higher-order characteristics of expansion. Ann. Phys. 321(4), 771–812 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Aasi, J., et al.: Constraints on cosmic strings from the LIGO-virgo gravitational-wave detectors. Phys. Rev. Lett. 112, 131101 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    Icke, V.: Which side are you on? Nat. Phys. 12(4), 374–374 (2016)

    Article  Google Scholar 

  24. 24.

    Malmi-Kakkada, A., Thirumalai, D.: Generalized Rayleigh–Plesset Theory for Cell Size Maintenance in Viruses and Bacteria (2019). arXiv:1902.07329

  25. 25.

    Doinikov, A.A., Bouakaz, A.: Review of shell models for contrast agent microbubbles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(5), 981–993 (2011)

    Article  Google Scholar 

  26. 26.

    Weinberg, S.: Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J. 168, 175 (1971)

    ADS  Article  Google Scholar 

  27. 27.

    Marmottant, P., Van Der Meer, S., Emmer, M., Versluis, M., De Jong, N., Hilgenfeldt, S., Lohse, D.: A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. JASA 118(6), 3499–3505 (2005)

    Article  Google Scholar 

  28. 28.

    Barceló, C.: Analogue black-hole horizons. Nat. Phys. 15, 210–213 (2019).

    Article  Google Scholar 

  29. 29.

    Euvé, L.-P., Robertson, S., James, N., Fabbri, A., Rousseaux, G.: Scattering of co-current surface waves on an analogue black hole. Phys. Rev. Lett. 124(14), 141101 (2020)

    ADS  Article  Google Scholar 

  30. 30.

    Kragh, H.: Cyclic models of the relativistic universe: the early history. In: Rowe, D.E., Sauer, T., Walter, S.A. (eds.) Beyond Einstein, pp. 183–204. Birkhäuser, New York (2018)

    Google Scholar 

Download references


GR thanks Jennifer Chaline for providing him with the essential knowledge on the Rayleigh–Plesset equation based on her Ph.D. thesis work. He also acknowledges discussions with M. Baudoin and P. Marmottant.

Author information



Corresponding authors

Correspondence to G. Rousseaux or S. C. Mancas.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Data Sharing

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rousseaux, G., Mancas, S.C. Visco-elastic cosmology for a sparkling universe?. Gen Relativ Gravit 52, 55 (2020).

Download citation