Skip to main content
Log in

Role of equation of states and thermodynamic potentials in avoidance of trapped surfaces in gravitational collapse

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we consider the novel scenario where a spherically symmetric perfect fluid star is undergoing continual gravitational collapse while continuously radiating energy in an exterior radiating spacetime. There are no trapped surfaces and the collapse ends to a flat spacetime. Also the collapsing matter obeys the weak and dominant energy conditions at all epoch. Our analysis transparently brings out the role of the equation of state as well as the bounds on the thermodynamic potentials to realise such a scenario. In this analysis we specifically address the issue when the matching surface is comoving, and hence our results will be generally different from those found by Senovilla et al., who considered non-comving matching surfaces. We argue that, since the system of Einstein field equations allows for such a scenario for an open set of initial data as well as the equation of state function in their respective functional spaces, these models are generic and devoid of the problems and paradoxes related to horizons and singularities. The recent high resolution radio telescopes should in principle detect the presence of these compact objects in the sky.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  2. Oppenheimer, J., Snyder, H.: Phys. Rev. 56, 455 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  3. Datt, B.: Z. Phys. 108, 314 (1938)

    Article  ADS  Google Scholar 

  4. Penrose, R.: Riv. Nuovo Cim. 1, 252 (1969)

    ADS  Google Scholar 

  5. Joshi, P.S.: Gravitational Collapse and Spacetime Singularities. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  6. Hamid, A.I.M., Goswami, R., Maharaj, S.D.: Class. Quantum Gravity 31, 135010 (2014)

    Article  ADS  Google Scholar 

  7. Steinmuiller, S., King, A., Lasota, J.P.: Phys. Lett. 51A, 191 (1975)

    Article  ADS  Google Scholar 

  8. Banerjee, A., Chatterjee, S., Dadhich, N.: Mod. Phys. Lett. A 17, 2335 (2002)

    Article  ADS  Google Scholar 

  9. Fayos, F., Jaen, X., Llanta, E., Senovilla, J.M.M.: Class. Quantum Gravity 8, 2057 (1991)

    Article  ADS  Google Scholar 

  10. Fayos, F., Jaen, X., Llanta, E., Senovilla, J.M.M.: Phys. Rev. 45, 2732 (1992)

    ADS  MathSciNet  Google Scholar 

  11. Fayos, F., Senovilla, J.M.M., Torres, R.: Phys. Rev. D 54, 4862 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Senovilla, J.M.M.: Gen. Relativ. Gravit. 30(1998), 701 (1998)

    Article  ADS  Google Scholar 

  13. Fayos, F., Senovilla, J.M.M., Torres, R.: Class. Quantum Gravity 20, 2579 (2003)

    Article  ADS  Google Scholar 

  14. Fayos, F., Torres, R.: Class. Quantum Gravity 21, 1351 (2004)

    Article  ADS  Google Scholar 

  15. Goswami, R., Joshi, P.S.: Phys. Rev. D 76, 084026 (2007). [arXiv:gr-qc/0608136]

    Article  ADS  MathSciNet  Google Scholar 

  16. Goswami, R., Joshi, P.S., Singh, P.: Phys. Rev. Lett. 96, 031302 (2006). https://doi.org/10.1103/PhysRevLett.96.031302. [arXiv:gr-qc/0506129]

    Article  ADS  Google Scholar 

  17. Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964)

    Article  ADS  Google Scholar 

  18. Zhang, H., Hu, Y., Li, X.-Z.: Phys. Rev. D 90, 024062 (2014)

    Article  ADS  Google Scholar 

  19. Ellis, G.F.R., Maartens, R., MacCallum, M.A.H.: Relativistic Cosmology. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  20. Wang, A., Wu, Y.: Gen. Relativ. Gravit. 31, 107 (1999)

    Article  ADS  Google Scholar 

  21. Darmois, G.J.: M’emorialdes Sciences Math’ematiques, vol. 25, p. 1. Gauthier-Villars, Paris (1927)

    Google Scholar 

  22. Israel, W.: Nuovo Cim. B 44, 1 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RG and TG are supported by National Research Foundation (NRF), South Africa.

Funding

Funding was provided by the Department of Science and Technology (Grant No. CPRR/113834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituparno Goswami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, R., Govender, T. Role of equation of states and thermodynamic potentials in avoidance of trapped surfaces in gravitational collapse. Gen Relativ Gravit 52, 2 (2020). https://doi.org/10.1007/s10714-019-2653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2653-8

Keywords

Navigation