Skip to main content
Log in

Thermodynamics of FRW universe with Chaplygin gas models

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we have examined the validity of the generalized second law of thermodynamics (GSLT) in an expanding Friedmann Robertson Walker (FRW) universe filled with different variants of Chaplygin gases. Assuming that the universe is a closed system bounded by the cosmological horizon, we first present the general prescription for the rate of change of total entropy on the boundary. In the subsequent part we have analyzed the validity of the generalised second law of thermodynamics on the cosmological apparent horizon and the cosmological event horizon for different Chaplygin gas models of the universe. The analysis is supported with the help of suitable graphs to clarify the status of the GSLT on the cosmological horizons. In the case of the cosmological apparent horizon we have found that some of these models always obey the GSLT, whereas the validity of GSLT on the cosmological event horizon of all these models depend on the choice of free parameters in the respective models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  2. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  Google Scholar 

  4. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998)

    Article  ADS  Google Scholar 

  6. Padmanabhan, T.: Class. Quantum Gravity 19, 5387 (2002)

    Article  ADS  Google Scholar 

  7. Cai, R. G., Kim, S.P.: J. High Energy Phys. JHEP02(2005)050. arXiv:hep-th/0501055v1

    Article  MathSciNet  Google Scholar 

  8. Paranjape, A., Sarkar, S., Padmanabhan, T.: Phys. Rev. D 74, 104015 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Akbar, M., Cai, Rong-Gen: Phys. Lett. B 635, 7 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Akbar, M., Cai, Rong-Gen: Phys. Rev. D 75, 084003 (2007)

    Article  ADS  Google Scholar 

  11. Cai, R.G., Cao, L.M.: Phys. Rev. D 75, 064008 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wang, B., Gong, Y., Abdalla, E.: Phys. Rev. D 74, 083520 (2006)

    Article  ADS  Google Scholar 

  13. Sadjadi, H.M.: Phys. Rev. D 73, 063525 (2006)

    Article  ADS  Google Scholar 

  14. Mazumder, N., Chakraborty, S.: Class. Quantum Gravity 26, 195016 (2009)

    Article  ADS  Google Scholar 

  15. Mazumder, N., Chakraborty, S.: Gen. Relativ. Gravit. 42, 813 (2010)

    Article  ADS  Google Scholar 

  16. Jamil, M., Saridakis, E.N., Setare, M.R.: Phys. Rev. D 81, 023007 (2010)

    Article  ADS  Google Scholar 

  17. Tian, D.W., Booth, I.: Phys. Rev. D 92, 024001 (2015). arXiv:1411.6547v3 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  18. Yang, R.J., Qi, J.Z., Feng, L.: Int. J. Theor. Phys. 51, 1692 (2012)

    Article  Google Scholar 

  19. Xing, L., Chen, J., et al.: Mod. Phys. Lett. A 26(12), 885–892 (2011)

    Article  ADS  Google Scholar 

  20. Rani, S., et al.: Astrophys. Space Sci. 361, 286 (2016)

    Article  ADS  Google Scholar 

  21. Sharif, M., Zubair, M.: JCAP 03, 028 (2012)

    Article  ADS  Google Scholar 

  22. Cardone, Vincenzo F., et al.: Entropy 19, 392 (2017)

    Article  ADS  Google Scholar 

  23. Iqbal, A., Jawad, A.: Adv. High Energy Phys. 6139430 (2018)

  24. Moradpour, H., et al.: Adv. High Energy Phys. 718583 (2014)

  25. Moradpour, H., Dehghani, R.: Adv. High Energy Phys. 7248520 (2016)

  26. Lymperis, A., Saridakis, E.N.: Eur. Phys. J. C 78, 993 (2018)

    Article  ADS  Google Scholar 

  27. Mitra, S., Saha, S., Chakraborty, S.: Adv. High Energy Phys. 430764 (2015)

  28. Jawad, A., et al.: Commun. Theor. Phys. 63, 453 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Izquierdo, G., Pavón, D.: Phys. Lett. B 633, 420 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Salti, M.: Int. J. Theor. Phys. 52, 4583 (2013)

    Article  Google Scholar 

  31. Sharif, M., Saleem, R.: Int. J. Theor. Phys. 53, 3794 (2014)

    Article  Google Scholar 

  32. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  33. Karami, K., et al.: Astrophys. Space Sci. 331, 309 (2011)

    Article  ADS  Google Scholar 

  34. Bandyopadhyay, T.: Astrophys. Space Sci. 341, 689 (2012)

    Article  ADS  Google Scholar 

  35. Faraoni, V.: Cosmological and Black Hole Apparent Horizons. Springer International Publishing, Cham (2015)

    Book  MATH  Google Scholar 

  36. Chakraborty, S., Guha, S., Panigrahi, D.: arXiv:1906.12185v1 [gr-qc] (2019)

  37. Kamenshchik, A., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  38. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  39. Benaoum, H.B.: arXiv:hep-th/0205140

  40. Debnath, U.: Astrophys. Space Sci. 312, 295 (2007)

    Article  ADS  Google Scholar 

  41. Chakraborty, W., Debnath, U.: Grav. Cosmol. 16, 223 (2010)

    Article  ADS  Google Scholar 

  42. Gonzalez-Diaz, P.F.: Phys. Rev. D 68, 021303 (R) (2003)

  43. Pourhassan, B.: Int. J. Mod. Phys. D 22, 1350061 (2013)

    Article  ADS  Google Scholar 

  44. Sharif, M., Ashraf, S.: Adv. High Energy Phys. 2018, 8949252 (2018). arXiv:1810.01286v1 [gr-qc]

    Google Scholar 

  45. Binétruy, P., Helou, A.: Class. Quantum Gravity 32, 205006 (2015)

    Article  ADS  Google Scholar 

  46. Panigrahi, D., Chatterjee, S.: J. Cosmol. Astropart. Phys. JCAP05(2016)052. arXiv:1505.00373v3 [gr-qc]

    Article  Google Scholar 

  47. Chen, J-bin, Liu, Z-qi, Xing, L.: Int. J. Mod. Phys. D 24, 1550059 (2015)

    Article  ADS  Google Scholar 

  48. Sharif, M., Sarwar, A.: Mod. Phys. Lett. A 31, 1650061 (2016)

    Article  ADS  Google Scholar 

  49. Joshi, P.S., Narayan, R.: arXiv:1402.3055 [hep-th]

  50. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their valuable comments and suggestions. SC is grateful to CSIR, Government of India for providing junior research fellowship. SG gratefully acknowledges IUCAA, India for an associateship and CSIR, Government of India for approving the major research project No. 03(1446)/18/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbari Guha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Guha, S. Thermodynamics of FRW universe with Chaplygin gas models. Gen Relativ Gravit 51, 158 (2019). https://doi.org/10.1007/s10714-019-2645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2645-8

Keywords

Navigation