Skip to main content
Log in

Event horizon silhouette: implications to supermassive black holes in the galaxies M87 and Milky Way

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We demonstrate that a dark silhouette of the black hole illuminated by a thin accretion disk and seen by a distant observer is, in fact, a silhouette of the event horizon hemisphere. The boundary of this silhouette is a contour of the event horizon equatorial circle if a thin accretion disk is placed in the black hole equatorial plane. A luminous matter plunging into black hole from different directions provides the observational opportunity for recovering a total silhouette of the invisible event horizon globe. The event horizon silhouette is projected on the celestial sphere within a position of the black hole shadow. A relative position of the bright part of the accretion disk with respect to the position of event horizon silhouette in the presented first image the black hole in the galaxy M87 corresponds to a rather high value of the black hole spin, \(a\simeq 0.75\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., Ott, T.: Monitoring stellar orbits around the massive black hole in the Galactic Center. Astrophys. J. 692, 1075–1109 (2009)

    Article  ADS  Google Scholar 

  2. Meyer, L., Ghez, A.M., Schodel, R., Yelda, S., Boehle, A., Lu, J.R., Do, T., Morris, M.R., Becklin, E.E., Matthews, K.: The shortest known period star orbiting our Galaxy’s supermassive black hole. Science 338, 84–87 (2012)

    Article  ADS  Google Scholar 

  3. Johnson, M.D., et al.: Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*. Science 350, 1242 (2015)

    Article  ADS  Google Scholar 

  4. Chatzopoulos, S., Fritz, T.K., Gerhard, O., Gillessen, S., Wegg, C., Genzel, R., Pfuhl, O.: The old nuclear star cluster in the Milky Way: dynamics, mass, statistical parallax, and black hole mass. Mon. Not. R. Astron. Soc. 447, 948 (2015)

    Article  ADS  Google Scholar 

  5. Dokuchaev, V.I., Eroshenko, YuN: Physical laboratory at the center of the Galaxy. Physics-Uspekhi 58, 772–784. arXiv:1512.02943 [astro-ph.HE] (2015)

    Article  ADS  Google Scholar 

  6. Johannsen, T.: Sgr A* and General Relativity. Class. Quantum Grav. 33, 113001 (2016)

    Article  ADS  Google Scholar 

  7. Eckart, A., Huttemann, A., Kiefer, C., Britzen, S., Zajacek, M., Lammerzahl, C., Stockler, M., Valencia-S, M., Karas, V., García-Marín, M.: The Milky Way’s supermassive black hole: how good a case is it? A challenge for astrophysics and philosophy of science. Found. Phys. 47, 553 (2017)

    Article  ADS  Google Scholar 

  8. Zhu, Z., Johnson, M.D., Narayan, R.: Testing General Relativity with the black hole shadow size and asymmetry of Sagittarius A*: limitations from interstellar scattering. Astrophys. J. 870, 6 (2019)

    Article  ADS  Google Scholar 

  9. Zakharov, A.F.: Tests of gravity theories with Galactic Center observations. Int. J. Mod. Phys. D (2019). https://doi.org/10.1142/S0218271819410037

  10. Tuan Do et al.: Envisioning the next decade of Galactic Center science: a laboratory for the study of the physics and astrophysics of supermassive black holes. arXiv:1903.05293 [astro-ph.GA]

  11. Fish, V., Akiyama, K., Bouman, K., Chael, A., Johnson, M., Doeleman, S., Blackburn, L., Wardle, John, Freeman, W., The Event Horizon Telescope Collaboration: Observing—and imaging—Active Galactic Nuclei with the Event Horizon Telescope. Galaxies 4, 54 (2016)

    Article  ADS  Google Scholar 

  12. Lacroix, T., Silk, J.: Constraining the distribution of dark matter at the Galactic centre using the high-resolution Event Horizon Telescope. Astron. Astrophys. 554, A36 (2013)

    Article  ADS  Google Scholar 

  13. Kamruddin, A.B., Dexter, J.: A geometric crescent model for black hole images. Mon. Not. R. Astron. Soc. 434, 765–771 (2013)

    Article  ADS  Google Scholar 

  14. Johannsen, T., Wang, C., Broderick, A.E., Doeleman, S.S., Fish, V.L., Loeb, A., Psaltis, D.: Testing General Relativity with accretion-flow imaging of Sgr A*. Phys. Rev. Lett. 116, 031101 (2016)

    Article  ADS  Google Scholar 

  15. Johannsen, T., Wang, C., Broderick, A.E., Doeleman, S.S., Fish, V.L., Loeb, A., Psaltis, D.: Testing General Relativity with accretion-flow imaging of Sgr A*. Phys. Rev. Lett. 117, 091101 (2016)

    Article  ADS  Google Scholar 

  16. Broderick, A.E., Fish, V.L., Johnson, M.D., Rosenfeld, K., Wang, C., Doeleman, S.S., Akiyama, K., Johannsen, T., Roy, A.L.: Modeling seven years of Event Horizon Telescope observations with radiatively inefficient accretion flow models. Astrophys. J. 820, 137 (2016)

    Article  ADS  Google Scholar 

  17. Kim, J., Marrone, D.P., Chan, C.-K., Medeiros, L., Ozel, F., Psaltis, D.: High resolution linear polarimetric imaging for the Event Horizon Telescope. Astrophys. J. 829, 11 (2016)

    Article  Google Scholar 

  18. Kim, J., Marrone, D.P., Chan, C.-K., Medeiros, L., Ozel, F., Psaltis, D.: Bayesian techniques for comparing time-dependent GRMHD simulations to variable Event Horizon Telescope observations. Astrophys. J. 832, 156 (2016)

    Article  ADS  Google Scholar 

  19. Roelofs, F., Johnson, M.D., Shiokawa, H., Doeleman, S.S., Falcke, H.: Quantifying intrinsic variability of Sagittarius A* using closure phase measurements of the Event Horizon Telescope. Astrophys. J. 847, 55 (2017)

    Article  ADS  Google Scholar 

  20. Doeleman, S.: Seeing the unseeable. Nat. Astron. 1, 646 (2017)

    Article  ADS  Google Scholar 

  21. Goddi, C., et al.: BlackHoleCam: fundamental physics of the Galactic Center. Int. J. Mod. Phys. D 26, 1730001 (2017)

    Article  ADS  Google Scholar 

  22. Abuter, R., GRAVITY Collaboration, et al.: Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 615, L15 (2017)

  23. Amorim, A., GRAVITY Collaboration, et al.: Test of the Einstein equivalence principle near the Galactic Center supermassive black hole. Phys. Rev. Lett. 122, 101102 (2019)

  24. Boyer, R.H., Lindquist, R.W.: Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265–281 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  25. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  Google Scholar 

  26. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1983)

    MATH  Google Scholar 

  27. Bardeen, J.M.: Timelike and null geodesics in the Kerr metric. In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes, pp. 217–239. Gordon and Breach, New York (1973)

    Google Scholar 

  28. Cunningham, C.T., Bardeen, J.M.: The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 183, 237–264 (1973)

    Article  ADS  Google Scholar 

  29. Thorne, K.S.: Disk-accretion onto a black hole. II. Evolution of the hole. Astrophys. J. 191, 507–520 (1974)

    Article  ADS  Google Scholar 

  30. Dokuchaev, V.I.: Spin and mass of the nearest supermassive black hole. Gen. Relativ. Gravit. 46, 1832 (2014)

    Article  ADS  Google Scholar 

  31. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972)

    Article  ADS  Google Scholar 

  32. Wilkins, D.C.: Bound geodesics in the Kerr metric. Phys. Rev. D 5, 814 (1972)

    Article  ADS  Google Scholar 

  33. Bardeen, J.M.: A variational principle for rotating stars in General Relativity. Astrophys. J. 162, 71–95 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  34. Dokuchaev, V.I.: To see invisible: image of the event horizon within the black hole shadow. Int. J. Mod. Phys. D 28, 1941005 (2019)

    Article  Google Scholar 

  35. Dexter, J., Agol, E., Fragile, P.C.: Millimeter flares and VLBI visibilities from relativistic simulations of magnetized accretion onto the Galactic Center black hole. Astrophys. J. 703, L142–L146 (2009)

    Article  ADS  Google Scholar 

  36. Luminet, J.-P.: Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 75, 228–235 (1979)

    ADS  Google Scholar 

  37. Bromley, B., Chen, K., Miller, W.: Line emission from an accretion disk around a rotating black hole: toward a measurement of frame dragging. Astrophys. J. 475, 57 (1997)

    Article  ADS  Google Scholar 

  38. Fanton, C., Calvani, M., de Felice, F., Cadez, A.: Detecting accretion disks in Active Galactic Nuclei. Publ. Astron. Soc. Jpn. 49, 159–169 (1997)

    Article  ADS  Google Scholar 

  39. Fukue, J.: Silhouette of a dressed black hole. Publ. Astron. Soc. Jpn. 55, 155–159 (2003)

    Article  ADS  Google Scholar 

  40. Fukue, J.: Light-curve diagnosis of a hot spot for accretion-disk models. Publ. Astron. Soc. Japan 55, 1121–1125 (2003)

    Article  ADS  Google Scholar 

  41. Lu, Ru-Sen, Roelofs, F., Fish, V.L., Shiokawa, H., Doeleman, S.S., Gammie, C.F., Falcke, H., Krichbaum, T.P., Zensus, J.A.: Imaging an event horizon: mitigation of source variability of Sagittarius A*. Astrophys. J. 817, 173 (2016)

    Article  ADS  Google Scholar 

  42. Luminet J.-P.: An illustrated history of black hole imaging: personal recollections. arXiv:1902.11196 [astro-ph.HE] (1972–2002)

  43. H. Shiokawa: Event horizon telescope/simulations gallery/accretion disk. https://eventhorizontelescope.org/simulations-gallery (2019)

  44. The Event Horizon Telescope Collaboration: First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. 875, L1 (2019)

  45. The Event Horizon Telescope Collaboration: First M87 event horizon telescope results. II. Array and instrumentation. Astrophys. J. 875, L2 (2019)

  46. The Event Horizon Telescope Collaboration: First M87 event first M87 event horizon telescope results. III. Data processing and calibration. Astrophys. J. 875, L3 (2019)

  47. The Event Horizon Telescope Collaboration: First M87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. 875, L4 (2019)

  48. The Event Horizon Telescope Collaboration: First M87 event horizon telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. 875, L5 (2019)

  49. The Event Horizon Telescope Collaboration: First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. 875, L5 (2019)

  50. James, O., von Tunzelmann, E., Franklin, P., Thorne, K.S.: Gravitational lensing by spinning black holes in astrophysics, and in the movie interstellar. Class. Quantum Grav. 32, 065001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  51. Luminet J.-P.: The warped science of interstellar. arXiv:1503.08305 [physics.pop-ph]

Download references

Acknowledgements

We are grateful to E. O. Babichev, V. A. Berezin, Yu. N. Eroshenko and A. L. Smirnov for stimulating discussions. This work was supported in part by the Russian Foundation for Basic Research grant 18-52-15001a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav I. Dokuchaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokuchaev, V.I., Nazarova, N.O. & Smirnov, V.P. Event horizon silhouette: implications to supermassive black holes in the galaxies M87 and Milky Way. Gen Relativ Gravit 51, 81 (2019). https://doi.org/10.1007/s10714-019-2564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2564-8

Keywords

Navigation