Skip to main content
Log in

Mathematical general relativity

  • Editor’s Choice (Invited Review: State of the Field)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present a number of open problems within general relativity. After a brief introduction to some technical mathematical issues and the famous singularity theorems, we discuss the cosmic censorship hypothesis and the Penrose inequality, the uniqueness of black hole solutions and the stability of Kerr spacetime and the final state conjecture, critical phenomena and the Einstein–Yang–Mills equations, and a number of other problems in classical general relativity. We then broaden the scope and discuss some mathematical problems motivated by quantum gravity, including AdS/CFT correspondence and problems in higher dimensions and, in particular, the instability of anti-de Sitter spacetime, and in cosmology, including the cosmological constant problem and dark energy, the stability of de Sitter spacetime and cosmological singularities and spikes. Finally, we briefly discuss some problems in numerical relativity and relativistic astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yau, S.-T. (ed): Seminar on differential geometry, Annals of Math Studies. Princeton University Press Princeton, New Jersey (1982)

  2. Penrose, R.: Riv. Nuovo Cimento 1, 252 (1969)

    Google Scholar 

  3. Penrose, R.: Gen. Relativ. Gravit. 34, 1141 (2002)

    ADS  Google Scholar 

  4. Penrose, R.: In: Lebovitz, N.R., Reid, W.H., Vandervoort, P.O. (eds.) Theoretical Principles in Astrophysics and Relativity. Univ. of Chicago Press, Chicago (1978)

  5. Penrose, R.: Ann. N.Y. Acad. 224, 125 (1973)

    ADS  Google Scholar 

  6. Bartnik, R.: Some open problems in mathematical relativity. In: Conference on Mathematical Relativity (Canberra, 1988). In: Bartnik, R. (ed.) Proceedings Centre Mathematical Analysis Australian National Universiy, 19, Australian National Universiy, Canberra, pp. 244–268 (1989). https://projecteuclid.org/download/pdf_1/euclid.pcma/1416335857

  7. Eschenburg, J.-H.: J. Differ. Geom. 27, 477 (1988)

    Google Scholar 

  8. Galloway, G.J.: J. Geom. Phys. 6, 127 (1989)

    ADS  MathSciNet  Google Scholar 

  9. Newman, R.P.A.C.: J. Differ. Geom. 31, 163 (1990)

    Google Scholar 

  10. Galloway, G.J.: Some rigidity results for spatially closed spacetimes, Mathematics of gravitation, Part I, pp. 21–34. Polish Acad. Sci., Warsaw (1997)

    MathSciNet  MATH  Google Scholar 

  11. Eschenburg, J.-H., Galloway, G.J.: Commun. Math. Phys. 148, 209 (1992)

    ADS  Google Scholar 

  12. Galloway, G.J., Vega, C.: Ann. Henri Poincare 15, 2241 (2014)

    ADS  MathSciNet  Google Scholar 

  13. Le Tiec, A., Whiting, B., Poisson, E. (eds.): Focus issue: Approaches to the two-body problem. http://www.iopscience.org/0264-9381/page/Focus Issues

  14. Abbott, B.P. et al.: [LIGO/Virgo Collaboration]. Phys. Rev. Lett. 116 061102 (2016). arXiv:1602.03837

  15. Chrusciel, P.T., Galloway, G.J., Pollack, D.: Mathematical general relativity: a sampler. Bull. Am. Math. Soc. 47, 567 (2010). arXiv:1004.1016

    MathSciNet  MATH  Google Scholar 

  16. Aretakis, S., Rodnianski, I.: The Cauchy problem in general relativity. General relativity and gravitation, pp. 452–479, Cambridge Univ. Press, Cambridge (2015): https://mathscinet.ams.org/mathscinet-getitem?mr=3644042

  17. Coley, A.: Open problems in mathematical physics. Phys. Scr. 92, 01 (2017)

    Google Scholar 

  18. Rendall, A.: Living Rev. Rel. 5, 6 (2002). arXiv:gr-qc/0203012

    Google Scholar 

  19. Andersson, L.: The Global Existence Problem in General Relativity. The Einstein Field Equations and the Large Scale Behaviour of Gravitational Fields, pp. 71–120. Birkhäuser, Basel (2004). arxiv:gr-qc/9911032

    Google Scholar 

  20. Ionescu, A.D., Pausader, B.: On the global regularity for a Wave–Klein–Gordon coupled system. arXiv:1703.02846

  21. LeFloch, P.G., Ma, Y.: Commun. Math. Phys. 346, 603 (2016)

    ADS  Google Scholar 

  22. Narita, M.: Class. Quantum Gravity 19, 6279 (2002). arXiv:gr-qc/0210088

    ADS  Google Scholar 

  23. Choquet-Bruhat, Y., Geroch, R.: Commun. Math. Phys. 14, 329 (1969)

    ADS  Google Scholar 

  24. Choquet-Bruhat, Y., York, J.: The Cauchy problem. In: Held, A. (ed.) General Relativity and Gravitation, vol. 1, p. 99. Plenum, New York (1980)

    Google Scholar 

  25. Friedrich, H.: Commun. Math. Phys. 107, 587 (1986)

    ADS  Google Scholar 

  26. Dain, S., Friedrich, H.: Commun. Math. Phys. 222, 569 (2001)

    ADS  Google Scholar 

  27. Kroon, J.A.Valiente: Commun. Math. Phys. 244, 133 (2004)

    ADS  Google Scholar 

  28. Ringstrom, H.: Class. Quant. Grav. 32, 124003 (2015) ; Linear systems of wave equations on cosmological backgrounds with convergent asymptotics. arXiv:1707.02803

  29. Ringstrom, H.: On proving future stability of cosmological solutions with accelerated expansion. In: Surveys in Differential Geometry 2015: One Hundred Years of General Relativity. Surv. Differ. Geom. vol. 20, p. 249. Int. Press, Boston, MA, (2015)

    MathSciNet  MATH  Google Scholar 

  30. Christodoulou, D., Klainerman, S.: Commun. Pure Appl. Math. 43, 137 (1990)

    Google Scholar 

  31. Andersson, L., Moncrief, V.: Future complete vacuum spacetimes. In: The Einstein Equations and the Large Scale Behaviour of Gravitational Fields, pp. 71–120. Birkhäuser, Basel (2004). arXiv:gr-qc/0303045

    Google Scholar 

  32. Isenberg, J.: J. Math. Phys. 26, 1024 (1985)

    ADS  MathSciNet  Google Scholar 

  33. Moncrief, V., Isenberg, J.: Commun. Math. Phys. 89, 387 (1983)

    ADS  Google Scholar 

  34. Chrusciel, P.T., Rendall, A.D.: Ann. Phys. 242, 349 (1995)

    ADS  Google Scholar 

  35. Moncrief, V.: Ann. Phys. 132, 87 (1981)

    ADS  Google Scholar 

  36. Chrusciel, P.T.: Ann. Phys. 202, 100 (1990)

    ADS  Google Scholar 

  37. Isenberg, J., Moncrief, V.: Commun. Math. Phys. 86, 485 (1982)

    ADS  Google Scholar 

  38. Chrusciel, P.T., Isenberg, J., Moncrief, V.: Class. Quantum Gravity 7, 1671 (1990)

    ADS  Google Scholar 

  39. Kichenassamy, S., Rendall, A.D.: Class. Quantum Gravity 15, 1339 (1998)

    ADS  Google Scholar 

  40. Chrusciel, P.T.: On uniqueness in the large of solutions of Einstein’s equations. In: Mathematical Aspects of Classical Field Theory, pp. 235–273. Amer. Math. Soc., Providence, RI; Seattle, WA (1991)

  41. Chrusciel, P.T., Isenberg, J.: Phys. Rev. D 48, 1616 (1993)

    ADS  MathSciNet  Google Scholar 

  42. Choquet-Bruhat, Y.: Ann. Henri Poincare 2, 1007 (2001)

    ADS  MathSciNet  Google Scholar 

  43. Choquet-Bruhat, Y.: Future complete Einsteinian space times with U(1) symmetry, the unpolarized case. In: Andersson, L. (ed.) The Einstein Equations and the Large Scale Behaviour of Gravitational Fields, pp. 77–120. Birkhäuser, Basel (2004). arXiv:gr-qc/0305060

    Google Scholar 

  44. Chrusciel, P.T., Galloway, G.J.: Commun. Math. Phys. 193, 449 (1998)

    ADS  Google Scholar 

  45. Kunzinger, M., Steinbauer, R., Stojkovic, M.: Differ. Geom. Appl. 34, 14 (2014); Class. Quantum. Gravity 32 155010 (2015). arXiv:1502.00287

  46. Kunzinger, M., Steinbauer, R., Stojkovic, M., Vickers, J.A.: Class. Quantum Gravity 32, 075012 (2015). arXiv:1411.4689 [gr-qc]

    ADS  Google Scholar 

  47. Hughes, T.J.R., Kato, T., Marsden, J.E.: Arch. Rational Mech. Anal. 63, 273 (1976)

    ADS  MathSciNet  Google Scholar 

  48. Klainerman, S., Rodnianski, I.: The causal structure of microlocalized Einstein metrics (2001) arXiv:math.AP/0109174

  49. Klainerman, S., Rodnianski, I.: J. Hyperbolic Differ. Eqn. 1, 85 (2004)

    Google Scholar 

  50. Tataru, D.: Nonlinear wave equations. In: Proceedings of the ICM, Beijing, vol. 3, (2003). arXiv:math.AP/0304397

  51. Senovilla, J.M.M., Garfinkle, D.: Class. Quantum Gravity 32, 124008 (2015). arXiv:1410.5226

    ADS  Google Scholar 

  52. Penrose, R.: Phys. Rev. Lett. 14, 57 (1965)

    ADS  MathSciNet  Google Scholar 

  53. Penrose, R.: Singularities and time asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  54. S. W. Hawking. Proc. R. Soc. Lond. A294 511 (1966); ibid. A295 490 (1966); ibid. A300 187 (1967)

  55. Penrose, R., Hawking, S.W.: Proc. R. Soc. Lond. A 314, 529 (1970)

    ADS  Google Scholar 

  56. Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge Univ. Press, Cambridge (1973)

    MATH  Google Scholar 

  57. Senovilla, J.M.M.: Singularity theorems in general relativity: achievements and open questions. In: Lehner, C., Renn, J., Schemmel, M. (eds.) Chapter 15 of Einstein and the Changing Worldviews of Physics, Einstein Studies, vol. 12. Birkhauser (2012)

  58. Christodoulou, D.: The formation of black holes in general relativity. In: Monographs in Mathematics. European Mathematical Soc. Publishing House, Helsinki (2009)

  59. Klainerman, S., Luk, J., Rodnianski, I.: Invent. Math. 198, 1 (2014)

    ADS  MathSciNet  Google Scholar 

  60. Klainerman, S., Rodnianski, I.: Acta Math. 208, 211 (2012)

    MathSciNet  Google Scholar 

  61. Luk, J., Rodnianski, I.: Nonlinear interactions of impulsive gravitational waves for the vacuum Einstein equations. Camb. J. Math. arXiv:1301.1072

  62. Dafermos, M.: Astrisque 123, 352 (2013)

    Google Scholar 

  63. An, X., Luk, J.: Trapped surfaces in vacuum arising dynamically from mild incoming radiation. arXiv:1409.6270

  64. An, X.: Emergence of apparent horizon in gravitational collapse. arXiv:1703.00118

  65. Andersson, L., Metzger, J.: Commun. Math. Phys. 290, 941 (2009)

    ADS  Google Scholar 

  66. Eichmair, M.: J. Differ. Geom. 83, 551 (2009)

    MathSciNet  Google Scholar 

  67. Alexakis, S.: Class. Quantum. Gravity 33, 115019 (2016). arXiv:1506.06400

    Google Scholar 

  68. Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped surfaces. arXiv: 1006.4601

  69. Hamilton, A.J.S., Avelino, P.P.: Phys. Rep. 495, 1 (2010). arXiv:0811.1926 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  70. Hamilton, A.J.S.: Inflation followed by BKL collapse inside accreting, rotating black holes. arXiv:1703.01921 [gr-qc]

  71. Misner, C.: Taub-NUT space as a counter-example to almost anything. In: Ehlers, J. (ed.) Relativity Theory and Astrophysics. American Mathematics Society, Providence (1967)

    Google Scholar 

  72. Goncalves, S.M.C.V.: Phys. Rev. D 63, 064017 (2001). arXiv:gr-qc/0012032

    ADS  MathSciNet  Google Scholar 

  73. Christodoulou, D.: Ann. Math. 140, 607 (1994)

    MathSciNet  Google Scholar 

  74. Christodoulou, D.: Ann. Math. 149, 183 (1999)

    MathSciNet  Google Scholar 

  75. Choptuik, M.W., Lehner, L., Pretorius, F.: Probing Strong Field Gravity Through Numerical Simulations. In: Ashtekar, A., Berger, B., Isenberg, J., MacCallum, M.A.H. (eds.) General Relativity and Gravitation: A Centennial Perspective. Cambridge University Press, Cambridge (2015). arXiv:1502.06853

    Google Scholar 

  76. Christodoulou, D.: Class. Quantum Gravity 16, A23 (1999)

    Google Scholar 

  77. Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: the stability of the Kerr Cauchy horizon. arXiv:1710.01722

  78. Ringstrom, H.: Living Rev. Rel. 13, 2 (2010)

    Google Scholar 

  79. Wald, R.M.: Gravitational collapse and cosmic censorship. In: Iyer, B.R., Bhawal, B. (eds.) Black Holes, Gravitational Radiation and the Universe. Springer, Berlin (1998). arXiv: grqc/9710068

    Google Scholar 

  80. Christodoulou, D.: Commun. Math. Phys. 105, 337 (1986); Commun. Math. Phys. 109 613 (1987)

  81. Isenberg, J.: Progress on strong cosmic censorship. In: Mathematical Aspects of Classical Field Theory, pp. 403–418. Amer. Math. Soc., Providence, RI; Seattle, WA (1992)

  82. Dias, O.J.C., Santos, J.E., Way, B.: JHEP 12, 171 (2015)

    ADS  Google Scholar 

  83. Horowitz, G.T., Santos, J.E., Way, B.: Class. Quantum Gravity 33, 195007 (2016)

    ADS  Google Scholar 

  84. Bizon, P., Rostworowski, A.: Phys. Rev. Lett. 107, 031102 (2011)

    ADS  Google Scholar 

  85. Schoen, R., Yau, S.T.: Commun. Math. Phys. 65, 45 (1979); Commun. Math. Phys. 79 231 (1981)

  86. Moncrief, V., Eardley, D.M.: Gen. Relativ. Gravit. 13, 887 (1981)

    ADS  Google Scholar 

  87. Huisken, G., Ilmanen, T.: Math. Res. Not. 20, 1045 (1997); J. Differ. Geom. 59 353 (2001)

  88. Rendall, A.D.: Helv. Phys. Acta 69, 490 (1996). arXiv:gr-qc/9606049

    ADS  MathSciNet  Google Scholar 

  89. Huisken, G.: An isoperimetric concept for mass and quasilocal mass. Oberwolfach Rep., no. 2, 87 (2006)

  90. Bray, H.L.: J. Differ. Geom. 59, 177 (2000)

    Google Scholar 

  91. Bray, H.L., Roesch, H.P.: Null geometry and the penrose conjecture. arXiv:1708.00941

  92. Roesch, H.: Proof of a null penrose conjecture using a new quasi-local mass. arXiv:1609.02875

  93. Mars, M., Soria, A.: Class. Quantum Gravity 33, 115019 (2016)

    ADS  Google Scholar 

  94. Dain, S.: Gen. Relativ. Gravit. 46, 1 (2014). arXiv:1401.8166 ; Class. Quantum Gravity 29, 073001 (2012)

  95. Mars, M., Soria, A.: Class. Quantum Gravity 33, 115019 (2016). arXiv:1511.06242 [gr-qc]

    ADS  Google Scholar 

  96. Tod, P.: Proc. R. Soc. Lond. A 388, 457 (1983)

    ADS  Google Scholar 

  97. Gibbons, G.: The isoperimetric and Bogomolny inequalities for black holes. In: Willmore, T., Hitchin, N. (eds.) Global Riemannian Geometry. Ellis Harwood Ltd., Chichester (1984)

    Google Scholar 

  98. Thorne, K.S.: Nonspherical Gravitational Collapse - A Short Review. In: Klauder, J. (ed.) Magic without Magic: John Archibald Wheeler, p. 231. Freeman, San Francisco (1972)

    Google Scholar 

  99. Senovilla, J.M.M.: Europhys. Lett. 81, 20004 (2008)

    ADS  Google Scholar 

  100. Choptuik, M.W.: Phys. Rev. Lett. 70, 9 (1993)

    ADS  Google Scholar 

  101. Reiterer, M., Trubowitz, E.: Choptuik’s critical spacetime exists. arXiv:1203.3766

  102. Bartnik, R., Mckinnon, J.: Phys. Rev. Lett. 61, 141 (1988)

    ADS  MathSciNet  Google Scholar 

  103. Eardley, D., Moncrief, V.: Commun. Math. Phys. 83, 171 (1982); Commun. Math. Phys. 83 193 (1982)

  104. Klainerman, S., Machedon, M.: Ann. Math. 142, 39 (1995)

    MathSciNet  Google Scholar 

  105. Chrusciel, P.T., Shatah, J.: Asian J. Math. 1, 530 (1997)

    MathSciNet  Google Scholar 

  106. Friedrich, H.: J. Differ. Geom. 34, 275 (1991)

    Google Scholar 

  107. Bartnik, R.A., Fisher, M., Olinyk, T.A.: J. Math. Phys. 51, 032504 (2010). arXiv:0907.3975

    ADS  MathSciNet  Google Scholar 

  108. Bizon, P.: Commun. Math. Phys. 215, 45 (2000)

    ADS  MathSciNet  Google Scholar 

  109. Bizon, P., Chmaj, T., Tabor, Z.: Nonlinearity 14, 1041 (2001)

    ADS  MathSciNet  Google Scholar 

  110. Andersson, L., Gudapati, N., Szeftel, J.: Global regularity for the 2+1 dimensional equivariant Einstein–Wave map system. arXiv:1501.00616

  111. Sterbenz, J., Tataru, D.: Commun. Math. Phys. 298, 231 (2009). arXiv:0907.3148

    ADS  Google Scholar 

  112. Krieger, J., Schlag, W.: Large global solutions for energy supercritical nonlinear wave equations on \(R^{3+1}\). arXiv:1403.2913

  113. Bizon, P., Biernat, P.: Comm. Math. Phys. (2015). https://doi.org/10.1007/s00220-015-2404-y

    ADS  MathSciNet  MATH  Google Scholar 

  114. Bizon, P.: Acta Phys. Polonica B 33, 1893 (2002)

    ADS  MathSciNet  Google Scholar 

  115. Donninger, R.: Commun. Pure Appl. Math. 64, 1095 (2011); Math Z. 278 1005 (2014)

  116. Choptuik, M., Chmaj, T., Bizon, P.: Phys. Rev. Lett. 77, 424 (1996). arXiv:gr-qc/9603051

    ADS  Google Scholar 

  117. Andreasson, H.: Living Rev. Rel. 14, 4 (2011). arXiv:1106.1367

    Google Scholar 

  118. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical series, vol. 41. Princeton University Press (1993)

  119. Lindblad, H., Rodnianski, I.: Commun. Math. Phys. 256, 43 (2005)

    ADS  Google Scholar 

  120. Bieri, L., Zipser, N.: Extensions of the Stability Theorem of the Minkowski Space in General Relativity. AMS/IP Studies in Advanced Mathematics, vol. 45. American Mathematical Society, Providence, RI; International Press, Cambridge, MA (2009)

  121. Fajman, D., Joudioux, J., Smulevici, J.: The stability of the Minkowski space for the Einstein–Vlasov system. arXiv:1707.06141

  122. Lindblad, H., Taylor, M.: Commun. Part. Differ. Eq. arXiv:1707.06079

  123. Taylor, M.: Ann. PDE 3, 9 (2017). arXiv:1602.02611

    Google Scholar 

  124. Bunting, G., Masood-ul-Alam, A.K.M.: Gen. Relativ. Gravit. 19, 147 (1987)

    ADS  Google Scholar 

  125. Israel, W.: Commun. Math. Phys. 8, 245 (1968)

    ADS  Google Scholar 

  126. Kerr, R.P.: Phys. Rev. Lett. 11, 237 (1963)

    ADS  MathSciNet  Google Scholar 

  127. Carter, B.: In: DeWitt, B., DeWitt, C. (eds.) Black Holes, 1972 Les Houches Lectures. Gordon and Breach, NY (1973)

    Google Scholar 

  128. Carter, B.: Commun. Math. Phys. 99, 563 (1985)

    ADS  MathSciNet  Google Scholar 

  129. Robinson, D.C.: Phys. Rev. Lett. 34, 905 (1975)

    ADS  Google Scholar 

  130. Newman, E.: J. Math. Phys. 6, 918 (1965)

    ADS  Google Scholar 

  131. Mazur, P.: J. Phys. A 15, 3173 (1982)

    ADS  MathSciNet  Google Scholar 

  132. Heusler, M.: Living Rev. Rel. 1, 6 (1998). http://www.livingreviews.org/Articles/Volume1/1998-6heusler

  133. Chandrasekhar, S.: Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  134. Holzegel, G.: Class. Quantum Gravity 33, 205001 (2016)

    ADS  MathSciNet  Google Scholar 

  135. Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations. 146 p (2016). arXiv:1601.06467

  136. Klainerman, S., Szeftel, J.: Global Nonlinear stability of Schwarzschild Spacetime under polarized perturbations. 425 p. arXiv:1711.07597

  137. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes: the full subextremal case. arXiv:1402.7034

  138. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Clay Math. Proc. 17, 97 (2008). arXiv:0811.0354

    MathSciNet  Google Scholar 

  139. Dafermos, M., Holzegel, G., Rodnianski, I.: Boundedness and decay for the Teukolsky equation on Kerr spacetimes I. arXiv:1711.07944

  140. Zilhao, M., Cardoso, V., Herdeiro, C., Lehner, L., Sperhake, U.: Phys. Rev. D 90, 124088 (2014). arXiv:1410.0694

    ADS  Google Scholar 

  141. Friedman, J.L.: Commun. Math. Phys. 63, 243 (1978). arXiv:1608.02035

    ADS  Google Scholar 

  142. Moschidis, G.: A proof of Friedman’s ergosphere instability for scalar waves. arXiv:1608.02035

  143. Aretakis, S.: Horizon instability of extremal black holes. arXiv:1206.6598

  144. Hintz, P., Vasy, A.: The global non-linear stability of the Kerr-de Sitter family of black holes. arXiv:1606.04014

  145. Schlue, V.: Commun. Math. Phys. 334, 977 (2015)

    ADS  MathSciNet  Google Scholar 

  146. Holzegel, G., Smulevici, J.: Anal. PDE 7, 1057 (2014). arXiv:1303.5944

    MathSciNet  Google Scholar 

  147. Dafermos, M., Holzegel, G., Rodnianski, I.: A scattering theory construction of dynamical vacuum black holes. (to appear in) J. Differ. Geom. (2013). arXiv:1306.5364

  148. Yang, H., Paschalidis, V., Yagi, K., Lehner, L., Pretorius, F., Yunes, N.: Phys. Rev. D 97, 024049 (2018). arXiv:1707.00207

    ADS  MathSciNet  Google Scholar 

  149. Ehlers, J.: The Newtonian limit of general relativity. In: Ferrarese, G. (ed.) Classical Mechanics and Relativity: Relationship and Consistency. Bibliopolis, Naples (1991)

    Google Scholar 

  150. Ehlers, J., Buchert, T.: Gen. Relativ. Gravit. 29, 733 (1997)

    ADS  Google Scholar 

  151. Oliynyk, T.A.: Commun. Math. Phys. 276, 131 (2007). arXiv:astro-ph/9510056

    ADS  Google Scholar 

  152. Ehlers, J.: Folklore in relativity and what is really known. In: MacCallum, M.A.H. (ed.) General Relativity and Gravitation 11. Springer, Stockholm (1986)

    Google Scholar 

  153. Bartnik, R.: Commun. Math. Phys. 117, 615 (1988)

    ADS  Google Scholar 

  154. Chrusciel, P.T., Isenberg, J., Pollack, D.: Commun. Math. Phys. 257, 29 (2005)

    ADS  Google Scholar 

  155. Dilts, J., Holst, M.: When do spacetimes have constant mean curvature slices? arXiv:1710.03209

  156. Coley, A., Hervik, S., Pelavas, N.: Class. Quantum Gravity 27, 102001 (2010). arXiv:1003.2373

    ADS  Google Scholar 

  157. Coley, A., Hervik, S.: Gen. Relativ. Gravit. 43, 2199 (2011)

    ADS  Google Scholar 

  158. Coley, A., Hervik, S., Pelavas, N.: Class. Quantum Gravity 26, 025013 (2009). arXiv:0904.4877

    ADS  Google Scholar 

  159. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  160. Coley, A., McNutt, D.D., Shoom, A.: Phys. Lett. B 771, 131 (2017)

    ADS  Google Scholar 

  161. Coley, A., McNutt, D.D.: Class. Quantum Gravity 35, 025013 (2018). arXiv:1710.08773

    ADS  Google Scholar 

  162. Bieri, L., Garfinkle, D., Yunes, N.: AMS Not. 64, 07 (2017). arXiv:1710.03272

    Google Scholar 

  163. Bieri, L., Garfinkle, D., Yau, S.-T.: In: The centenary of general relativity, volume 20 of Surveys in Differential Geometry. arXiv:1505.05213

  164. Christodoulou, D.: Phys. Rev. Lett. 67, 1486 (1991)

    ADS  MathSciNet  Google Scholar 

  165. Bieri, L., Garfinkle, D., Yunes, N.: Gravitational wave memory in de Sitter spacetime. arXiv:1706.02009

  166. Bieri, L., Garfinkle, D., Yau, S.-T.: Phys. Rev. D 94, 064040 (2016). arXiv:1509.01296

    ADS  MathSciNet  Google Scholar 

  167. Ishak, M.: Testing general relativity in cosmology. arXiv:1806.10122

  168. Goode, S.W., Wainwright, J.: Class. Quantum Gravity 2, 99 (1985)

    ADS  Google Scholar 

  169. Goode, S.W., Coley, A.A., Wainwright, J.: Class. Quantum Gravity 9, 445 (1992). arXiv:0810.3744

    ADS  Google Scholar 

  170. Claudel, C.M., Newman, K.P.: Proc. R. Soc. Lond. Ser. A 454, 3 (1998)

    Google Scholar 

  171. Middleton, J., Barrow, J.D.: Phys. Rev. D 77, 10352 (2008). arXiv:0801.4090

    Google Scholar 

  172. Kirnos, I.V., Makarenko, A.N., Pavluchenko, S.A., Toporensky, A.V.: Gen. Relativ. Gravit. 42, 2633 (2010). arXiv:0906.0140 [gr-qc]

    ADS  Google Scholar 

  173. Barrow, J.D., Hervik, S.: Phys. Rev. D 81, 023513 (2010). arXiv:0911.3805

    ADS  Google Scholar 

  174. Barcelo, C., Carballo-Rubioy, R., Garayz, L.J.: JHEP 05, 054 (2017). arXiv:1701.09132

    ADS  Google Scholar 

  175. Hawking, S.W.: Nature 248, 30 (1974)

    ADS  Google Scholar 

  176. Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)

    ADS  MathSciNet  Google Scholar 

  177. Hawking, S.: Commun. Math. Phys. 43, 199 (1975)

    ADS  Google Scholar 

  178. DeWitt, B.S.: Phys. Rev. 160, 1113 (1967)

    ADS  Google Scholar 

  179. Ashtekar, A., Singh, P.: Class. Quantum Gravity 28, 213001 (2011)

    ADS  Google Scholar 

  180. Wall, A.C.: Class. Quantum Gravity 30, 165003 (2013)

    ADS  Google Scholar 

  181. Baumann, D., McAllister, L.: Inflation and String Theory. In: Cambridge Monographs on Mathematical Physics: Cambridge University Press (2015). arXiv:1404.2601

  182. Maldacena, J.M.: Int. J. Theor. Phys. 38, 1113 (1999)

    Google Scholar 

  183. Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998)

    ADS  MathSciNet  Google Scholar 

  184. Klebanov, I., Maldacena, J.: Phys. Today 62, 28 (2009)

    Google Scholar 

  185. Holzegel, G., Shao, A.: Unique continuation from infinity in asympotically Anti-de Sitter spacetimes II: non-static boundaries. arXiv:1608.07521 [gr-qc]

  186. Friedrich, H.: J. Geom. Phys. 17, 125 (1995)

    ADS  MathSciNet  Google Scholar 

  187. Bizon, P.: Gen. Relativ. Gravit. 46, 1724 (2014). arXiv:1312.5544

    ADS  Google Scholar 

  188. Bizon, P., Maliborski, M., Rostworowski, A.: Phys. Rev. Lett. 115, 081103 (2015)

    ADS  Google Scholar 

  189. Dafermos, M., Holzegel, G.: 2006 Seminar at DAMTP (University of Cambridge). https://dpmms.cam.ac.uk/~md384/ADSinstability.pdf

  190. Anderson, M.T.: Class. Quantum Gravity 23, 6935 (2006)

    ADS  Google Scholar 

  191. Maliborski, M., Rostworowski, A.: Phys. Rev. Lett. 111, 051102 (2013). arXiv:1303.3186

    ADS  Google Scholar 

  192. Dias, O.J.C., Horowitz, G.T., Santos, J.E.: Class. Quantum Gravity 29, 194002 (2012). arXiv:1109.1825

    ADS  Google Scholar 

  193. Dias, O.J.C., Santos, J.E.: AdS nonlinear instability: breaking spherical and axial symmetries. arXiv:1705.03065

  194. Rostworowski, A.: Class. Quantum Gravity 33, 23LT01 (2016). arXiv:1612.00042

    Google Scholar 

  195. Dias, O.J.C., Horowitz, G.T., Marolf, D., Santos, J.E.: Class. Quantum Gravity 29, 235019 (2012)

    ADS  Google Scholar 

  196. Green, S.R., Maillard, A., Lehner, L., Liebling, S.L.: Phys. Rev. D 92, 084001 (2015). arXiv:1507.08261

    ADS  MathSciNet  Google Scholar 

  197. Martinon, G.: The instability of anti-de Sitter space-time. arXiv:1708.05600

  198. Moschidis, G.: The Einstein null dust system in spherical symmetry with an inner mirror: structure of the maximal development and Cauchy stability arXiv:1704.08685; A proof of the instability of AdS for the Einstein null dust system with an inner mirror arXiv:1704.08681

  199. Jalmuzna, J., Rostworowski, A., Bizon, P.: Phys. Rev. D 84, 085021 (2011)

    ADS  Google Scholar 

  200. Green, M., Schwarz, J., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  201. Polchinski, J.: String Theory. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  202. Emparan, R., Reall, H.S.: Living Rev. Rel. 11, 6 (2008). arXiv:0801.3471

    Google Scholar 

  203. Coley, A., Milson, R., Pravda, V., Pravdova, A.: Class. Quantum Gravtiy 21, L35 (2004). arXiv:0401008 [gr-qc]

    ADS  Google Scholar 

  204. Coley, A.: Class. Quantum Gravity 25, 033001 (2008). arXiv:0710.1598

    Google Scholar 

  205. Galloway, G.J., Senovilla, J.M.M.: Class. Quantum Gravity 27, 152002 (2010)

    ADS  Google Scholar 

  206. Schoen, R., Yau, S.-T.: Positive scalar curvature and minimal hypersurface singularities. arXiv:1704.05490

  207. Lehner, L., Pretorius, F.: Phys. Rev. Lett. 105, 101102 (2010)

    ADS  MathSciNet  Google Scholar 

  208. Gregory, R., Laflamme, R.: Phys. Rev. Lett. 70, 2837 (1993)

    ADS  MathSciNet  Google Scholar 

  209. Emparan, R., Reall, H.S.: Phys. Rev. Lett. 88, 101101 (2002)

    ADS  MathSciNet  Google Scholar 

  210. Santos, J.E., Way, B.: Phys. Rev. Lett. 114, 221101 (2015)

    ADS  Google Scholar 

  211. Tanabe, K.: JHEP 02, 151 (2016)

    ADS  Google Scholar 

  212. Figueras, P., Kunesch, M., Tunyasuvunakool, S.: Phys. Rev. Lett. 116, 071102 (2016)

    ADS  Google Scholar 

  213. Myers, R.C., Perry, M.J.: Ann. Phys. 172, 304 (1986)

    ADS  Google Scholar 

  214. Emparan, R., Myers, R.C.: JHEP 09, 025 (2003)

    ADS  Google Scholar 

  215. Dias, O.J.C., Figueras, P., Monteiro, R., Santos, J.E., Emparan, R.: Phys. Rev. D 80, 111701 (2009)

    ADS  Google Scholar 

  216. Figueras, P., Kunesch, M., Lehner, L., Tunyasuvunakool, S.: Phys. Rev. Lett. 118, 151103 (2017)

    ADS  Google Scholar 

  217. Henneaux, M.: Khalatnikov–Lifshitz analysis. In: Quantum Mechanics of Fundamental Systems: the Quest for Beauty and Simplicity—Claudio Bunster Festsschrift. arXiv:0806.4670

  218. Brandenberger, R., Peter, P.: Found. Phys. 47, 797 (2017). arXiv:1603.05834 [hep-th]

    ADS  MathSciNet  Google Scholar 

  219. Garfinkle, D., Lim, W.C., Pretorius, F., Steinhardt, P.J.: Phys. Rev. D 78, 083537 (2008)

    ADS  MathSciNet  Google Scholar 

  220. Xue, B., Garfinkle, D., Pretorius, F., Steinhardt, P.J.: Phys. Rev. D 88, 083509 (2013)

    ADS  Google Scholar 

  221. Malik, K., Wands, D.: Phys. Rep. 475, 1 (2009)

    ADS  MathSciNet  Google Scholar 

  222. Kodama, H., Sasaki, M.: Prog. Theor. Phys. Suppl. 78, 1–166 (1984)

    ADS  Google Scholar 

  223. Coley, A., Ellis, G.F.R.: Theoretical cosmology (preprint) (2019)

  224. Fleury, P., Clarkson, C., Maartens, R.: J. Cosmol. Astropart. Phys. 1703, 062 (2017)

    ADS  Google Scholar 

  225. Adamek, J., Clarkson, C., Coates, L., Durrer, R., Kunz, M.: Bias and scatter in the Hubble diagram from cosmological large-scale structure. arXiv:1812.04336

  226. Coley, A., Lehner, L., Pretorius, F., Wiltshire, D.: Computational issues in mathematical cosmology (2017); http://cms.iopscience.iop.org/alfresco/d/d/workspace/SpacesStore/83f10d6e-0b33-11e7-9a47-19ee90157113/Overview-CC.pdf

  227. Bentivegna, E., Bruni, M.: Phys. Rev. Lett. 116, 251302 (2016). arXiv:1511.05124

    ADS  Google Scholar 

  228. Bentivegna, E.: Phys. Rev. D 95, 044046 (2017). arXiv:1610.05198

    ADS  MathSciNet  Google Scholar 

  229. Giblin, J.T., Mertens, J.B., Starkman, G.D.: Phys. Rev. Lett. 116, 251301 (2016); ibid. Phys. Rev. D 93, 124059 (2016). arXiv:1511.01105; ibid. A cosmologically motivated reference formulation of numerical relativity. arXiv:1704.04307

  230. Adamek, J., Daverio, D., Durrer, R., Kunz, M.: Nat. Phys. 12, 346 (2016). arXiv:1509.01699

    Google Scholar 

  231. Adamek, J., Clarkson, C., Daverio, D., Durrer, R., Kunz, M.: Safely smoothing spacetime: backreaction in relativistic cosmological simulations. arXiv:1706.09309

  232. Macpherson, H., Price, D.J., Lasky, P.D.: Einstein’s Universe: cosmological structure formation in numerical relativity. arXiv:1807.01711

  233. Martin, J.: The theory of inflation. arXiv:1807.11075

  234. Martin, J.: Cosmic inflation: trick or treat?. arXiv:1902.05286

  235. Akrami, Y. et al.: Planck 2018 results. I. Overview. arxiv:1807.06205; X. Constraints on inflation arxiv:1807.06211

  236. Brandenberger, R.H.: Beyond standard inflationary cosmology. arXiv:1809.04926

  237. Khoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N.: Phys. Rev. D 64, 123522 (2001)

    ADS  MathSciNet  Google Scholar 

  238. Khoury, J., Ovrut, B.A., Seiberg, N., Steinhardt, P.J., Turok, N.: Phys. Rev. D 65, 086007 (2002)

    ADS  Google Scholar 

  239. Renaux-Petel, S., Turzyński, K.: Phys. Rev. Lett. 117, 141301 (2015)

    ADS  Google Scholar 

  240. East, W.E., Kleban, M., Linde, A., Senatore, L.: JCAP 09, 010 (2016). arXiv:1511.05143

    ADS  Google Scholar 

  241. Braden, J., Johnson, M.C., Peiris, H.V., Aguirre, A.: Phys. Rev. D 96, 023541 (2017). arXiv:1604.04001

    ADS  MathSciNet  Google Scholar 

  242. Allen, R.E., Lidstrom, S.: Life, the universe, and everything: 42 fundamental questions. Phys. Scr. 92, 012501 (2017). [Focus Issue on 21st Century Frontiers]

    ADS  Google Scholar 

  243. Freese, K.: Status of Dark Matter in the Universe. arXiv:1701.01840

  244. Witten, E.: The cosmological constant from the viewpoint of string theory. In: Cline, D.B. (ed.) Sources and Detection of Dark Matter and Dark Energy in the Universe, pp. 27–36. Springer, Berlin, Heidelberg (2001)

    Google Scholar 

  245. Steinhardt, P., Turok, N.: Science 312, 1180 (2006). arXiv:astro-ph/0605173

    ADS  MathSciNet  Google Scholar 

  246. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    ADS  Google Scholar 

  247. Padilla, A.: Lectures on the cosmological constant problem. arXiv:1502.05296

  248. Weinberg, S.: Phys. Rev. Lett. 59, 2607 (1987)

    ADS  Google Scholar 

  249. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  250. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  251. Buchert, T., Coley, A.A., Kleinert, H., Roukema, B.F., Wiltshire, D.L.: Int. J. Mod. Phys. D 25, 1630007 (2016). arXiv:1512.03313

    ADS  Google Scholar 

  252. Einasto, J.: Yakov Zeldovich and the Cosmic Web Paradigm. In: van de Weygaert, R., Shandarin, S., Saar, E., Einasto, J. (eds.) Proc. IAU Symp. vol. 308. Cambridge Univ. Press (2017). arXiv:1410.6932

  253. Hoyle, F., Vogeley, M.S.: Astrophys. J. 566, 641 (2002). arXiv:astro-ph/0109357

    ADS  Google Scholar 

  254. Hoyle, F., Vogeley, M.S.: Astrophys. J. 607, 751 (2004). arXiv:astro-ph/0312533

    ADS  Google Scholar 

  255. Pan, D.C., Vogeley, M.S., Hoyle, F., Choi, Y.Y., Park, C.: Mon. Not. R. Astron. Soc. 421, 926 (2012). arXiv:1103.4156

    ADS  Google Scholar 

  256. Brannlund, J., van den Hoogen, R., Coley, A.: Averaging geometrical objects on a differentiable manifold. arXiv:1003.2014

  257. van den Hoogen, R.: J. Math. Phys. 58, 122501 (2017)

    ADS  MathSciNet  Google Scholar 

  258. Coley, A.A.: Class. Quantum Gravity 27, 245017 (2010). arXiv:0908.4281

    ADS  Google Scholar 

  259. Buchert, T., et al.: Class. Quantum Gravity 32, 215021 (2015). arXiv:1505.07800

    ADS  MathSciNet  Google Scholar 

  260. Zalaletdinov, R.M.: Gen. Rel. Grav. 24, 1015 (1992) & Gen. Rel. Grav. 25 673 (1993). arXiv:gr-qc/9703016

  261. Mars, M., Zalaletdinov, R.M.: J. Math. Phys. 38, 4741 (1997)

    ADS  MathSciNet  Google Scholar 

  262. Coley, A.A., Pelavas, N., Zalaletdinov, R.M.: Phys. Rev. Lett. 95, 151102 (2005). arXiv:gr-qc/0504115

    ADS  MathSciNet  Google Scholar 

  263. Andersson, L.: Cosmological models and stability. in: general relativity, cosmology and astrophysics. In: Fundamental Theories of Physics, vol. 177, p. 277. Springer International Publishing Switzerland (2014). ISBN:978-3-319-06348-5

  264. Barrow, J.D., Galloway, G.J., Tipler, F.J.: Mon. Not. R. Astron. Soc. 223, 835 (1986)

    ADS  Google Scholar 

  265. Lin, X., Wald, R.M.: Phys. Rev. D 40, 3280 (1989); ibid. 41 2444 (1990)

  266. Friedrich, H.: J. Geom. Phys. 3, 101 (1986)

    ADS  MathSciNet  Google Scholar 

  267. Wald, R.: Phys. Rev. D 28, 2118 (1983)

    ADS  MathSciNet  Google Scholar 

  268. Rendall, A.D.: Math. Proc. Camb. Philos. Soc. 118, 511 (1995)

    Google Scholar 

  269. Coley, A.A.: Dynamical Systems and Cosmology. Kluwer Academic, Dordrecht (2003). ISBN:1-4020-1403-1

  270. Heinzle, J.M., Rendall, A.D.: Commun. Math. Phys. 269, 1 (2007)

    ADS  Google Scholar 

  271. Ringstrom, H.: Commun. Math. Phys. 290, 155 (2009)

    ADS  Google Scholar 

  272. Jensen, L.G., Stein-Schabes, J.A.: Phys. Rev. D 35, 1146 (1987)

    ADS  Google Scholar 

  273. Lifshitz, E.M., Khalatnikov, I.M.: Adv. Phys. 12, 185 (1963)

    ADS  Google Scholar 

  274. Belinskii, V.A., Khalatnikov, I.M., Lifschitz, E.M.: Adv. Phys. 19, 525 (1970); ibid. 31, 639 (1982)

  275. Belinskii, V.A., Khalatnikov, I.M.: Sov. Sci. Rev. Sect. A: Phys. Rev. 3, 555 (1981)

    Google Scholar 

  276. Berger, B.K., Moncrief, V.: Phys. Rev. D 48, 4676 (1993)

    ADS  MathSciNet  Google Scholar 

  277. Berger, B.K.: Living Rev. Rel. 5, 1 (2002)

    Google Scholar 

  278. Garfinkle, D.: Phys. Rev. Lett. 93, 161101 (2004)

    ADS  MathSciNet  Google Scholar 

  279. Garfinkle, D.: Class. Quantum Gravity 24, S295 (2007)

    ADS  Google Scholar 

  280. Wainwright, J., Ellis, G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  281. Uggla, C., van Elst, H., Wainwright, J., Ellis, G.F.R.: Phys. Rev. D 68, 103502 (2003)

    ADS  Google Scholar 

  282. Heinzle, J.M., Uggla, C.: Class. Quantum Gravity 26, 075016 (2009). arXiv:0901.0776

    ADS  Google Scholar 

  283. Rendall, A.D.: Class. Quantum Gravity 14, 2341 (1997)

    ADS  Google Scholar 

  284. Ringstrom, H.: Class. Quantumr Gravity 17, 713 (2000)

    ADS  MathSciNet  Google Scholar 

  285. Ringstrom, H.: Ann. Henri Poincare 2, 405 (2001)

    ADS  MathSciNet  Google Scholar 

  286. Brehm, B.: Bianchi VIII and IX vacuum cosmologies: almost every so- lution forms particle horizons and converges to the Mixmaster attractor. Doctoral thesis, Freie Universitat Berlin (2016). arXiv:1606.08058

  287. Heinzle, J.M., Uggla, C., Rohr, N.: Adv. Theor. Math. Phys. 13, 293 (2009)

    MathSciNet  Google Scholar 

  288. Belinskii, V.A., Grishchuk, L.P., Zeldovich, Ya B., Khalatnikov, I.M.: Sov. Phys. JETP 62, 195 (1986)

    Google Scholar 

  289. Hewitt, C.G., Horwood, J.T., Wainwright, J.: Class. Quantum Gravity 20, 1743 (2003)

    ADS  Google Scholar 

  290. LeBlanc, V.G.: Class. Quantum Gravity 14, 2281 (1997)

    ADS  Google Scholar 

  291. LeBlanc, V.G., Kerr, D., Wainwright, J.: Class. Quantum Gravity 12, 513 (1995)

    ADS  Google Scholar 

  292. Hewitt, C.G., Bridson, R., Wainwright, J.: Gen. Relativ. Gravit. 33, 65 (2001)

    ADS  Google Scholar 

  293. Hervik, S., van den Hoogen, R.J., Lim, W.C., Coley, A.A.: Class. Quantum Gravity 24, 3859 (2007). arXiv:gr-qc/0703038

    ADS  Google Scholar 

  294. Uggla, C.: Int. J. Mod. Phys. D 22, 1330002 (2013). arXiv:1306.6527; Gen. Rel. Grav. 45 1669 (2013). arXiv:1304.6905

    ADS  MathSciNet  MATH  Google Scholar 

  295. Maier, R., Soares, I.D., Tonini, E.V.: Class. Quantum Gravity 32, 235001 (2015). arXiv:1505.06189

    ADS  Google Scholar 

  296. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (1988)

    MATH  Google Scholar 

  297. Temam, R.: Dynamical systems in infinite dimensions. In: Nicolaenko, B., Foias, C., Temam, R. (eds.) The Connection between Infinite-Dimensional and Finite-Dimensional Dynamical Systems. American Mathematical Society, Providence (1988)

    Google Scholar 

  298. Damour, T., Henneaux, M., Nicolai, H.: Class. Quantum Gravity 20, R145 (2003). arXiv:hep-th/0212256

    ADS  Google Scholar 

  299. Damour, T., Henneaux, M., Nicolai, H.: Phys. Rev. Lett. 89, 221601 (2002). arXiv:hep-th/0207267

    ADS  MathSciNet  Google Scholar 

  300. Damour, T., Nicolai, H.: Class. Quantum Gravity 22, 2849 (2005)

    ADS  Google Scholar 

  301. Damour, T., Hillmann, C.: JHEP 0908, 100 (2009). arXiv:0906.3116 [hep-th]

    ADS  Google Scholar 

  302. Kleinschmidt, A., Koehn, M., Nicolai, H.: Phys. Rev. D 80, 061701 (2009). arXiv:0907.3048 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  303. Damour, T., Spindel, P.: Class. Quantum Gravity 30, 162001 (2013). arXiv:1304.6381 [gr-qc]; Phys. Rev. D 9,103509 (2014) arXiv:1406.1309 [gr-qc]; Phys. Rev. D 95, 126011 (2017) arXiv:1704.08116

  304. Rodnianski, I., Speck, J.: Stable Big bang formation in near-FLRW solutions to the Einstein–Scalar field and Einstein–Stiff fluid systems. arxiv:1407.6298

  305. Rodnianski, I., Speck, J.: On the nature of Hawking’s incompleteness for the Einstein-vacuum equations. arxiv:1804.06825

  306. Rodnianski, I., Speck, J.: The stability of the irrotational Euler–Einstein system with a positive cosmological constant. arXiv:0911.5501

  307. Ringstrom, H.: Math. Proc. Camb. Philos. Soc. 136, 485 (2004)

    MathSciNet  Google Scholar 

  308. Ringstrom, H.: Class. Quantum Gravity 21, S305 (2004)

    ADS  MathSciNet  Google Scholar 

  309. Lim, W.C.: Class. Quantum Gravity 32, 162001 (2015). arXiv:1507.02754

    ADS  Google Scholar 

  310. Coley, A.A., Gregoris, D., Lim, W.C.: Class. Quantum Gravity (2016). arXiv:1606.07177

  311. Lim, W.C., Andersson, L., Garfinkle, D., Pretorius, F.: Phys. Rev. D 79, 103526 (2009). arXiv:0904.1546

    ADS  Google Scholar 

  312. Berger, B.K., Isenberg, J., Weaver, M.: Phys. Rev. D 64, 084006 (2001)

    ADS  MathSciNet  Google Scholar 

  313. Coley, A.A., Lim, W.C.: Phys. Rev. Lett. 108, 191101 (2012). arXiv:1205.2142

    ADS  Google Scholar 

  314. Lim, W.C., Coley, A.A.: Class. Quantum Gravity 31, 015020 (2014). arXiv:1311.1857

    ADS  Google Scholar 

  315. Heinzle, J.M., Uggla, C.: Gen. Relativ. Gravit 45, 939 (2013). arXiv:1212.5500 [gr-qc]

    ADS  Google Scholar 

  316. Heinzle, J.M., Uggla, C., Lim, W.C.: Phys. Rev. D 86, 104049 (2012). arXiv:1206.0932 [gr-qc]

    ADS  Google Scholar 

  317. Westernacher-Schneider, J.R., Lehner, L., Oz, Y.: JHEP 12, 067 (2015). arXiv:1510.00736

    ADS  Google Scholar 

  318. Barack, L. et al.: Black holes, gravitational waves and fundamental physics: a roadmap. arXiv:1806.05195

Download references

Acknowledgements

I would like to thank Piotr Bizon, Mihales Dafermos, Luis Lehner and Frans Pretorius for detailed comments on an earlier version of the manuscript, and Eric Poisson, Claes Uggla and Clifford Will for useful remarks.

Funding

Financial support was provided by the Natural sciences and Engineering Research Council of Canada (Grant No. 4-4046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan A. Coley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coley, A.A. Mathematical general relativity. Gen Relativ Gravit 51, 78 (2019). https://doi.org/10.1007/s10714-019-2559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2559-5

Keywords

Navigation