A Machian wave effect in conformal, scalar–tensor gravitational theory

Abstract

A frequency-dependent Machian effect previously put forward by Woodward (that for a body undergoing mass–energy fluctuations, the second time derivative of the mass–energy density is a source of a gravitational field) is discussed within Einstein’s theory and justified using Hoyle–Narlikar’s conformal gravitational theory. It is shown that Einstein’s theory has a similar term that is 3rd order post-Newtonian, but besides the issue of coordinate-dependence, the Machian significance of any field term in Einstein’s equation depends on the (universe’s) cosmological solution to the field equations. Therefore, Woodward’s theory is examined within Hoyle–Narlikar’s scalar–tensor theory of gravitation (a theory that was expressly developed with the intent to incorporate Mach’s principle) for a universe undergoing accelerating expansion (hereby accounted for by a positive cosmological constant). It is shown under gauge invariant expressions that the conformal, scalar–tensor gravitational theory of Hoyle and Narlikar has a similar term of first order when the mass–energy fluctuation is due to distant objects but that it effectively becomes a higher order effect when the mass–energy fluctuations arise from fluctuation of the (local) mass–energy (as is necessarily the case in Woodward’s experimental results, since the only mass that can be purposively fluctuated in energy, monochromatically, is the local mass, instead of the distant masses responsible for most of the inertia according to Mach’s principle). Therefore this effect appears too small for practical space travel application (unless the spaceship is near a black hole or a neutron star). Present cosmological measurements of the possible time variation of G are shown to occur at much lower frequencies and therefore cannot be used to rule out Woodward’s effect if G exhibits significant time-dependence at higher frequencies than observed in these cosmological measurements.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Fearn, H., van Rossum, N., Wanser, K., Woodward, J.: J. Mod. Phys. 6, 1868–1880 (2015). https://physics.fullerton.edu/~heidi/JMP-MachII.pdf

  2. 2.

    Tajmar, M.: Estes Advanced Propulsion Workshop (19–22 September 2016). http://ssi.org/wp-content/uploads/2017/02/ssi_estes_park_proceedings_201609.pdf

  3. 3.

    Kößling, M., Monette, M., Weikert, M., Tajmar, M.: The SpaceDrive Project–Thrust Balance Development and New Measurements of the Mach-Effect and EMDrive Thrusters, IAC-18,C4,7-C3.5,5,x46021, 69th International Astronautical Congress (IAC), Bremen, Germany, pp. 1–16 (1–5 October 2018) https://www.researchgate.net/publication/328134095_The_SpaceDrive_Project-Thrust_Balance_Development_and_New_Measurements_of_the_Mach-Effect_and_EMDrive_Thrusters

  4. 4.

    Buldrini, N.: Estes Advanced Propulsion Workshop (19–22 September 2016). http://ssi.org/wp-content/uploads/2017/02/ssi_estes_park_proceedings_201609.pdf

  5. 5.

    Sciama, D.: Mon. Not. R. Astron. Soc. 113(1), 34–42 (1953)

    ADS  Article  Google Scholar 

  6. 6.

    Ellis, G.: Gen. Relat. Gravit. 39(4), 511–520 (2007). arxiv:astro-ph/0703751

  7. 7.

    Hoyle, F., Narlikar, J.: Action at a Distance in Physics and Cosmology. W. H. Freeman and Company, San Francisco (1974)

    Google Scholar 

  8. 8.

    Fearn, H.: Estes Advanced Propulsion Workshop (19–22 September 2016). http://ssi.org/wp-content/uploads/2017/02/ssi_estes_park_proceedings_201609.pdf

  9. 9.

    Fearn, H., Woodward, J.: J. Sp. Explor. 2(2), 98–105 (2013). https://physics.fullerton.edu/~heidi/JSE13.pdf

  10. 10.

    Ciufolini, I., Wheeler, J.: Gravitation and Inertia. Princeton University Press, Princeton (1995)

    Google Scholar 

  11. 11.

    Woodward, J.: Found. Phys. 34(10), 1475–1514 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    Davidson, W.: Mon. Not. R. Astron. Soc. 117(2), 212–224 (1957)

    ADS  Article  Google Scholar 

  13. 13.

    Landau, L., Lifshitz, E.: The Classical Theory of Fields, Course of Theoretical Physics, Fourth Revised English Edition, Elsevier, Oxford (1975). Third Revised English Edition, Pergamon, Oxford (1971)

    Google Scholar 

  14. 14.

    Einstein, A.: The Meaning of Relativity, 5th edn. Princeton University Press, Princeton (1956)

    Google Scholar 

  15. 15.

    Eddington, A.: The Mathematical Theory of Relativity. Third Edition (unaltered reprint of the second edition, 1924). Chelsea Publishing Company, New York (1975)

  16. 16.

    Poisson, E., Will, C.: Gravity; Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  17. 17.

    Maggiore, M.: Gravitational Waves, Volume 1: Theory and Experiments. Oxford University Press, Oxford (2008)

    Google Scholar 

  18. 18.

    Wald, R.: General Relativity. The University of Chicago Press, Chicago (1984)

    Google Scholar 

  19. 19.

    Misner, C., Thorne, K., Wheeler, J.: Gravitation. Princeton University Press, Princeton (1973)

    Google Scholar 

  20. 20.

    Brans, C.: Phys. Rev. Lett. 39(14), 856–857 (1977)

    ADS  Article  Google Scholar 

  21. 21.

    Brans, C., Dicke, R.: Phys. Rev. 124(3), 925–935 (1961)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Ozsváth, I., Schücking, E.: In: Recent Developments in General Relativity. Polish Scientific Publishers, Warsaw, pp. 339–350 (1962)

  23. 23.

    Göedel, K.: Rev. Mod. Phys. 21(3), 447–450 (1949)

    ADS  Article  Google Scholar 

  24. 24.

    Friedmann, A.: Zeitschrift für Physik 10(1), 377–386 (1922). Translated by Ellis and van Elst, General Relativity and Gravitation 31(12), 1991–2000 (1999). Translated by Doyle, B. in Lang, K., Gingerich, O.: A Source Book in Astronomy and Astrophysics: 1900–1975, Harvard University Press, Cambridge, pp. 838–843 (1979). http://wwwphy.princeton.edu/~steinh/ph563/friedmann.pdf

  25. 25.

    Hoyle, F., Narlikar, J.: Proc. R. Soc. Lond. A282(1389), 191–207 (1964)

    ADS  Google Scholar 

  26. 26.

    Hoyle, F., Narlikar, J.: Proc. R. Soc. Lond. A294(1437), 138–148 (1966)

    ADS  Google Scholar 

  27. 27.

    Hawking, S.: Proc. R. Soc. Lond. A286(1406), 313–319 (1965)

    ADS  Google Scholar 

  28. 28.

    Fearn, H.: J. Mod. Phys. 6(3), 260–272 (2015). https://physics.fullerton.edu/~heidi/JMP-Mach0.pdf

  29. 29.

    Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  30. 30.

    Blaschke, D., Dąbrowski, M.: Entropy 14(10), 1978–1996 (2012). https://arxiv.org/pdf/hep-th/0407078.pdf

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Schutz, B.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  32. 32.

    Weinberg, S.: Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  33. 33.

    Ellis, G., Maartens, R., MacCallum, M.: Relativistic Cosmology, 1st edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  34. 34.

    Penrose, R.: The Road to Reality. A Complete Guide to the Laws of the Universe. Alfred A. Knopf, New York (2004)

    Google Scholar 

  35. 35.

    Carroll, S.: Spacetime and Geometry. An Introduction to General Relativity. Pearson Education Ltd., London (2013)

    Google Scholar 

  36. 36.

    Narlikar, J., Dhurandhar, S., Vishwakarma, R., Valluri, S., Auddy, S.: Mon. Not. R. Astron. Soc. 451(2), 1390–1395 (2015). arxiv:1505.05494

    ADS  Article  Google Scholar 

  37. 37.

    Narlikar, J., Arp, H.: Astrophys. J. 482, L119–L120 (1997). ftp://ftp.lal.in2p3.fr/pub/flower/bibliographie/cosmology/narkilar-arp-1997.pdf

  38. 38.

    Narlikar, J., Das, P.: Astrophys. J. Part 1, 240, 401–414 (1980). http://repository.iucaa.in:8080/jspui/bitstream/11007/1523/1/105A_1980.PDF

  39. 39.

    Thorne, K.: Rev. Mod. Phys. 52(2), 299–340 (1980)

    ADS  Article  Google Scholar 

  40. 40.

    Thorne, K.: The Theory of Gravitational Radiation: An Introductory Review. In: Gravitational Radiation (eds). Dernelle and Piran, pp. 1–57, North Holland, Amsterdam (1983)

  41. 41.

    Bondi, H., Samuel, J.: Phys. Lett. A 228(3), 121–126 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    Barbour, J.: Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, Boston (1995)

    Google Scholar 

  43. 43.

    Biesiada, M., Malec, B.: Mon. Not. R. Astron. Soc. 350(2), 644–648 (2004)

    ADS  Article  Google Scholar 

  44. 44.

    Shapiro, I., Ash, M., Ingalls, R., Smith, W., Campbell, D., Dyce, R., Jurgens, R., Pettengill, G.: Phys. Rev. Lett. 26(18), 1132–1135 (1971)

    ADS  Article  Google Scholar 

  45. 45.

    Gillies, G.: Rep. Progress Phys. 60(2), 151–225 (1997)

    ADS  Article  Google Scholar 

  46. 46.

    Pitjeva, E., Pitjev, N.: Mon. Not. R. Astron. Soc. 432(4), 3431–3437 (2013)

    ADS  Article  Google Scholar 

  47. 47.

    Mier Hicks, F.: Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, “Spacecraft charging and attitude control characterization of electrospray thrusters on a magnetically levitated testbed” (2017). https://dspace.mit.edu/handle/1721.1/109639

Download references

Acknowledgements

The author acknowledges helpful conversations with T. Marshall Eubanks and Heidi Fearn. This work was supported by NASA Innovative Advanced Concepts (NIAC) Grant NNX17AJ78G “Mach Effects for In Space Propulsion: Interstellar Mission.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to José J. A. Rodal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodal, J.J.A. A Machian wave effect in conformal, scalar–tensor gravitational theory. Gen Relativ Gravit 51, 64 (2019). https://doi.org/10.1007/s10714-019-2547-9

Download citation

Keywords

  • Mach’s principle
  • Inertia
  • Scalar–tensor gravity
  • Conformal theory