A Machian wave effect in conformal, scalar–tensor gravitational theory

  • José J. A. RodalEmail author
Research Article


A frequency-dependent Machian effect previously put forward by Woodward (that for a body undergoing mass–energy fluctuations, the second time derivative of the mass–energy density is a source of a gravitational field) is discussed within Einstein’s theory and justified using Hoyle–Narlikar’s conformal gravitational theory. It is shown that Einstein’s theory has a similar term that is 3rd order post-Newtonian, but besides the issue of coordinate-dependence, the Machian significance of any field term in Einstein’s equation depends on the (universe’s) cosmological solution to the field equations. Therefore, Woodward’s theory is examined within Hoyle–Narlikar’s scalar–tensor theory of gravitation (a theory that was expressly developed with the intent to incorporate Mach’s principle) for a universe undergoing accelerating expansion (hereby accounted for by a positive cosmological constant). It is shown under gauge invariant expressions that the conformal, scalar–tensor gravitational theory of Hoyle and Narlikar has a similar term of first order when the mass–energy fluctuation is due to distant objects but that it effectively becomes a higher order effect when the mass–energy fluctuations arise from fluctuation of the (local) mass–energy (as is necessarily the case in Woodward’s experimental results, since the only mass that can be purposively fluctuated in energy, monochromatically, is the local mass, instead of the distant masses responsible for most of the inertia according to Mach’s principle). Therefore this effect appears too small for practical space travel application (unless the spaceship is near a black hole or a neutron star). Present cosmological measurements of the possible time variation of G are shown to occur at much lower frequencies and therefore cannot be used to rule out Woodward’s effect if G exhibits significant time-dependence at higher frequencies than observed in these cosmological measurements.


Mach’s principle Inertia Scalar–tensor gravity Conformal theory 



The author acknowledges helpful conversations with T. Marshall Eubanks and Heidi Fearn. This work was supported by NASA Innovative Advanced Concepts (NIAC) Grant NNX17AJ78G “Mach Effects for In Space Propulsion: Interstellar Mission.”


  1. 1.
    Fearn, H., van Rossum, N., Wanser, K., Woodward, J.: J. Mod. Phys. 6, 1868–1880 (2015).
  2. 2.
    Tajmar, M.: Estes Advanced Propulsion Workshop (19–22 September 2016).
  3. 3.
    Kößling, M., Monette, M., Weikert, M., Tajmar, M.: The SpaceDrive Project–Thrust Balance Development and New Measurements of the Mach-Effect and EMDrive Thrusters, IAC-18,C4,7-C3.5,5,x46021, 69th International Astronautical Congress (IAC), Bremen, Germany, pp. 1–16 (1–5 October 2018)
  4. 4.
    Buldrini, N.: Estes Advanced Propulsion Workshop (19–22 September 2016).
  5. 5.
    Sciama, D.: Mon. Not. R. Astron. Soc. 113(1), 34–42 (1953)ADSCrossRefGoogle Scholar
  6. 6.
    Ellis, G.: Gen. Relat. Gravit. 39(4), 511–520 (2007). arxiv:astro-ph/0703751
  7. 7.
    Hoyle, F., Narlikar, J.: Action at a Distance in Physics and Cosmology. W. H. Freeman and Company, San Francisco (1974)Google Scholar
  8. 8.
    Fearn, H.: Estes Advanced Propulsion Workshop (19–22 September 2016).
  9. 9.
    Fearn, H., Woodward, J.: J. Sp. Explor. 2(2), 98–105 (2013).
  10. 10.
    Ciufolini, I., Wheeler, J.: Gravitation and Inertia. Princeton University Press, Princeton (1995)CrossRefGoogle Scholar
  11. 11.
    Woodward, J.: Found. Phys. 34(10), 1475–1514 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Davidson, W.: Mon. Not. R. Astron. Soc. 117(2), 212–224 (1957)ADSCrossRefGoogle Scholar
  13. 13.
    Landau, L., Lifshitz, E.: The Classical Theory of Fields, Course of Theoretical Physics, Fourth Revised English Edition, Elsevier, Oxford (1975). Third Revised English Edition, Pergamon, Oxford (1971)Google Scholar
  14. 14.
    Einstein, A.: The Meaning of Relativity, 5th edn. Princeton University Press, Princeton (1956)zbMATHGoogle Scholar
  15. 15.
    Eddington, A.: The Mathematical Theory of Relativity. Third Edition (unaltered reprint of the second edition, 1924). Chelsea Publishing Company, New York (1975)Google Scholar
  16. 16.
    Poisson, E., Will, C.: Gravity; Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  17. 17.
    Maggiore, M.: Gravitational Waves, Volume 1: Theory and Experiments. Oxford University Press, Oxford (2008)Google Scholar
  18. 18.
    Wald, R.: General Relativity. The University of Chicago Press, Chicago (1984)CrossRefGoogle Scholar
  19. 19.
    Misner, C., Thorne, K., Wheeler, J.: Gravitation. Princeton University Press, Princeton (1973)Google Scholar
  20. 20.
    Brans, C.: Phys. Rev. Lett. 39(14), 856–857 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    Brans, C., Dicke, R.: Phys. Rev. 124(3), 925–935 (1961)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Ozsváth, I., Schücking, E.: In: Recent Developments in General Relativity. Polish Scientific Publishers, Warsaw, pp. 339–350 (1962)Google Scholar
  23. 23.
    Göedel, K.: Rev. Mod. Phys. 21(3), 447–450 (1949)ADSCrossRefGoogle Scholar
  24. 24.
    Friedmann, A.: Zeitschrift für Physik 10(1), 377–386 (1922). Translated by Ellis and van Elst, General Relativity and Gravitation 31(12), 1991–2000 (1999). Translated by Doyle, B. in Lang, K., Gingerich, O.: A Source Book in Astronomy and Astrophysics: 1900–1975, Harvard University Press, Cambridge, pp. 838–843 (1979).
  25. 25.
    Hoyle, F., Narlikar, J.: Proc. R. Soc. Lond. A282(1389), 191–207 (1964)ADSGoogle Scholar
  26. 26.
    Hoyle, F., Narlikar, J.: Proc. R. Soc. Lond. A294(1437), 138–148 (1966)ADSGoogle Scholar
  27. 27.
    Hawking, S.: Proc. R. Soc. Lond. A286(1406), 313–319 (1965)ADSGoogle Scholar
  28. 28.
    Fearn, H.: J. Mod. Phys. 6(3), 260–272 (2015).
  29. 29.
    Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  30. 30.
    Blaschke, D., Dąbrowski, M.: Entropy 14(10), 1978–1996 (2012). ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Schutz, B.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985)Google Scholar
  32. 32.
    Weinberg, S.: Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  33. 33.
    Ellis, G., Maartens, R., MacCallum, M.: Relativistic Cosmology, 1st edn. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  34. 34.
    Penrose, R.: The Road to Reality. A Complete Guide to the Laws of the Universe. Alfred A. Knopf, New York (2004)zbMATHGoogle Scholar
  35. 35.
    Carroll, S.: Spacetime and Geometry. An Introduction to General Relativity. Pearson Education Ltd., London (2013)Google Scholar
  36. 36.
    Narlikar, J., Dhurandhar, S., Vishwakarma, R., Valluri, S., Auddy, S.: Mon. Not. R. Astron. Soc. 451(2), 1390–1395 (2015). arxiv:1505.05494 ADSCrossRefGoogle Scholar
  37. 37.
    Narlikar, J., Arp, H.: Astrophys. J. 482, L119–L120 (1997).
  38. 38.
    Narlikar, J., Das, P.: Astrophys. J. Part 1, 240, 401–414 (1980).
  39. 39.
    Thorne, K.: Rev. Mod. Phys. 52(2), 299–340 (1980)ADSCrossRefGoogle Scholar
  40. 40.
    Thorne, K.: The Theory of Gravitational Radiation: An Introductory Review. In: Gravitational Radiation (eds). Dernelle and Piran, pp. 1–57, North Holland, Amsterdam (1983)Google Scholar
  41. 41.
    Bondi, H., Samuel, J.: Phys. Lett. A 228(3), 121–126 (1997)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Barbour, J.: Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, Boston (1995)zbMATHGoogle Scholar
  43. 43.
    Biesiada, M., Malec, B.: Mon. Not. R. Astron. Soc. 350(2), 644–648 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Shapiro, I., Ash, M., Ingalls, R., Smith, W., Campbell, D., Dyce, R., Jurgens, R., Pettengill, G.: Phys. Rev. Lett. 26(18), 1132–1135 (1971)ADSCrossRefGoogle Scholar
  45. 45.
    Gillies, G.: Rep. Progress Phys. 60(2), 151–225 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    Pitjeva, E., Pitjev, N.: Mon. Not. R. Astron. Soc. 432(4), 3431–3437 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Mier Hicks, F.: Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, “Spacecraft charging and attitude control characterization of electrospray thrusters on a magnetically levitated testbed” (2017).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Space Studies InstituteResearch Triangle ParkUSA

Personalised recommendations