Skip to main content

Observational constraints on the free parameters of an interacting Bose–Einstein gas as a dark-energy model

Abstract

Dark energy is modelled by a Bose–Einstein gas of particles with an attractive interaction. It is coupled to cold dark matter, within a flat universe, for the late-expansion description, producing variations in particle-number densities. The model’s parameters, and physical association, are: \(\Omega _{G0}\), \(\Omega _{m0}\), the dark-energy rest-mass energy density and the dark-matter term scaling as a mass term, respectively; \(\Omega _{i0}\), the self-interaction intensity; x, the energy exchange rate. Energy conservation relates such parameters. The Hubble equation omits \(\Omega _{G0}\), but also contains h, the present-day expansion rate of the flat Friedman–Lemâitre–Robertson–Walker metric, and \(\Omega _{b0}\), the baryon energy density, used as a prior. This results in the four effective chosen parameters \(\Omega _{b0}\), h, \(\Omega _{m0}\), \(\Omega _{i0}\), fit with the Hubble expansion rate H(z), and data from its value today, near distance, and supernovas. We derive wide \(1\sigma \) and \(2\sigma \) likelihood regions compatible with definite positive total CDM and IBEG mass terms. Additionally, the best-fit value of parameter x relieves the coincidence problem, and a second potential coincidence problem related to the choice of \(\Omega _{G0}\).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ade, P.A., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A., Barreiro, R., Bartlett, J., Bartolo, N., et al.: Astron. Astrophys. 594, A13 (2016)

    Article  Google Scholar 

  2. 2.

    Besprosvany, J., Izquierdo, G.: Class. Quantum Gravity 32, 055015 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    Abdalla, E., Abramo, L.R., Sodré, L., Wang, B.: Phys. Lett. B 673, 107–110 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    Olivares, G., Atrio-Barandela, F., Pavón, D.: Phys. Rev. D 77, 103520 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753–1935 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Astrophys. Space Sci. 342, 155–228 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    Wang, B., Abdalla, E., Atrio-Barandela, F., Pavn, D.: Rep. Prog. Phys. 79, 096901 (2016)

    ADS  Article  Google Scholar 

  8. 8.

    Izquierdo, G., Besprosvany, J.: Class. Quantum Gravity 27, 065012 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    Verde, L.: Statistical Methods in Cosmology. Lectures on Cosmology, pp. 147–177. Springer, New York (2010)

    Book  Google Scholar 

  10. 10.

    Durán, I., Pavón, D., Zimdahl, W.: J. Cosmol. Astropart. Phys. 2010, 018 (2010)

    Article  Google Scholar 

  11. 11.

    Ferreira, P.C., Pavón, D.: Universe 2, 27 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    Yang, W., Banerjee, N., Pan, S.: arXiv preprint arXiv:1705.09278 (2017)

  13. 13.

    Riess, A.G., Macri, L.M., Hoffmann, S.L., Scolnic, D., Casertano, S., Filippenko, A.V., Tucker, B.E., Reid, M.J., Jones, D.O., Silverman, J.M., et al.: Astrophys. J. 826, 56 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    Abbott, T.D., The LIGO Scientific Collaboration, et al.: Nature 551, 85–88 (2017)

  15. 15.

    Moresco, M., Cimatti, A., Jimenez, R., Pozzetti, L., Zamorani, G., Bolzonella, M., Dunlop, J., Lamareille, F., Mignoli, M., Pearce, H., et al.: J. Cosmol. Astropart. Phys. 2012, 006 (2012)

    Article  Google Scholar 

  16. 16.

    Stern, D., Jimenez, R., Verde, L., Kamionkowski, M., Stanford, S.A.: J. Cosmol. Astropart. Phys. 2010, 008 (2010)

    Article  Google Scholar 

  17. 17.

    Moresco, M., Pozzetti, L., Cimatti, A., Jimenez, R., Maraston, C., Verde, L., Thomas, D., Citro, A., Tojeiro, R., Wilkinson, D.: J. Cosmol. Astropart. Phys. 2016, 014 (2016)

    Article  Google Scholar 

  18. 18.

    Moresco, M.: Mon. Not. R. Astron. Soc. Lett. 450, L16–L20 (2015)

    ADS  Article  Google Scholar 

  19. 19.

    Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., et al.: Astron. J. 116, 1009 (1998)

    ADS  Article  Google Scholar 

  20. 20.

    Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R., Nugent, P., Castro, P., Deustua, S., Fabbro, S., Goobar, A., Groom, D., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Article  Google Scholar 

  21. 21.

    Spergel, D.N., Bean, R., Doré, O., Nolta, M., Bennett, C., Dunkley, J., Hinshaw, G., Jarosik, N.E., Komatsu, E., Page, L., et al.: Astrophys. J. Suppl. Ser. 170, 377 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    III SDSS 2017 Boss: Dark energy and the geometry of space. http://www.sdss3.org/surveys/boss.php

  23. 23.

    Allen, S., Rapetti, D., Schmidt, R., Ebeling, H., Morris, R., Fabian, A.: Mon. Not. R. Astron. Soc. 383, 879–896 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    Gong, Y., et al.: Phys. Rev. D 78, 123010 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    Slosar, A., Vazquez, J.: Simplemc. https://github.com/slosar/april (2017)

  26. 26.

    Vazquez, J., BOSS Collaboration et al.: Cosmological implications of baryon acoustic oscillation (BAO) measurements APS April Meeting Abstracts (2015)

  27. 27.

    Cooke, R.J., Pettini, M., Jorgenson, R.A., Murphy, M.T., Steidel, C.C.: Astrophys. J. 781, 31 (2014)

    ADS  Article  Google Scholar 

  28. 28.

    Zhang, C., Zhang, H., Yuan, S., Liu, S., Zhang, T.J., Sun, Y.C.: Res. Astron. Astrophys. 14, 1221 (2014)

    ADS  Article  Google Scholar 

  29. 29.

    Cuesta, A.J., Vargas-Magaña, M., Beutler, F., Bolton, A.S., Brownstein, J.R., Eisenstein, D.J., Gil-Marín, H., Ho, S., McBride, C.K., Maraston, C., et al.: Mon. Not. R. Astron. Soc. 457, 1770–1785 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    Simon, J., Verde, L., Jimenez, R.: Phys. Rev. D 71, 123001 (2005)

    ADS  Article  Google Scholar 

  31. 31.

    Blake, C., Brough, S., Colless, M., Contreras, C., Couch, W., Croom, S., Croton, D., Davis, T.M., Drinkwater, M.J., Forster, K., et al.: Mon. Not. R. Astron. Soc. 425, 405–414 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    Delubac, T., Bautista, J.E., Rich, J., Kirkby, D., Bailey, S., Font-Ribera, A., Slosar, A., Lee, K.G., Pieri, M.M., Hamilton, J.C., et al.: Astron. Astrophys. 574, A59 (2015)

    Article  Google Scholar 

  33. 33.

    Font-Ribera, A., Kirkby, D., Miralda-Escudé, J., Ross, N.P., Slosar, A., Rich, J., Aubourg, É., Bailey, S., Bhardwaj, V., Bautista, J., et al.: J. Cosmol. Astropart. Phys. 2014, 027 (2014)

    Article  Google Scholar 

  34. 34.

    Liddle, A.R.: Mon. Not. R. Astron. Soc. 351, L49 (2004)

    ADS  Article  Google Scholar 

  35. 35.

    Liddle, A.R.: Mon. Not. R. Astron. Soc. 377, L74 (2007)

    ADS  Article  Google Scholar 

  36. 36.

    Betoule, M., Kessler, R., Guy, J., Mosher, J., Hardin, D., Biswas, R., Astier, P., El-Hage, P., Konig, M., Kuhlmann, S., et al.: Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  37. 37.

    Arevalo, F., Cid, A., Moya, J.: Eur. Phys. J. C 77, 565 (2017)

    ADS  Article  Google Scholar 

  38. 38.

    Nunes, R., Pan, S., Saridakis, M.: Phys. Rev. D 94, 023508 (2016)

    ADS  Article  Google Scholar 

  39. 39.

    Xia, D., Wang, S.: Mon. Not. R. Astron. Soc. 463(1), 952 (2016)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from DGAPA-UNAM, project IN112916.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Germán Izquierdo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lucatero-Villaseñor, H.E., Izquierdo, G. & Besprosvany, J. Observational constraints on the free parameters of an interacting Bose–Einstein gas as a dark-energy model. Gen Relativ Gravit 50, 151 (2018). https://doi.org/10.1007/s10714-018-2473-2

Download citation

Keywords

  • Interacting dark energy
  • Observational constraints
  • Late acceleration of the Universe