Advertisement

The collisional Penrose process

Editor’s Choice (Invited Review: State of the Field)
Part of the following topical collections:
  1. Testing the Kerr spacetime with gravitational-wave and electromagnetic observations

Abstract

Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole’s event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy particles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrarily high center-of-mass energy in the limit of extremal black hole spin. The resulting particles can escape with high efficiency, potentially serving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole.

Keywords

Black holes Ergosphere Kerr metric 

Notes

Acknowledgements

We thank Alessandra Buonanno, Francesc Ferrer, Ted Jacobson, Henric Krawczynski, Tzvi Piran, Laleh Sadeghian, and Joe Silk for helpful comments and discussion. A special thanks to the editor of this Topical Collection, Emanuele Berti, for his encouragement and patience.

References

  1. 1.
  2. 2.
    Boyer, R.H., Lindquist, R.W.: J. Math. Phys. 8, 265 (1967).  https://doi.org/10.1063/1.1705193 ADSCrossRefGoogle Scholar
  3. 3.
    Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252–276 (1969), Gen. Rel. Grav. 34, 1141–1165 (2002)Google Scholar
  4. 4.
    Christodoulou, D.: Phys. Rev. Lett. 25, 1596 (1970).  https://doi.org/10.1103/PhysRevLett.25.1596 ADSCrossRefGoogle Scholar
  5. 5.
    Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Astrophys. J. 178, 347 (1972).  https://doi.org/10.1086/151796 ADSCrossRefGoogle Scholar
  6. 6.
    Wald, R.M.: Astrophys. J. 191, 231 (1974).  https://doi.org/10.1086/152959 ADSCrossRefGoogle Scholar
  7. 7.
    Piran, T., Shaham, J.: Phys. Rev. D 16, 1615 (1977).  https://doi.org/10.1103/PhysRevD.16.1615 ADSCrossRefGoogle Scholar
  8. 8.
    Novikov, I.D., Thorne, K.S.: In: Dewitt, C., Dewitt, B.S. (eds.) Black Holes (Les Astres Occlus), pp. 343–450 (1973). http://adsabs.harvard.edu/abs/1973blho.conf..343N
  9. 9.
    Thorne, K.S.: ApJ 191, 507 (1974).  https://doi.org/10.1086/152991 ADSCrossRefGoogle Scholar
  10. 10.
    Piran, T., Shaham, J., Katz, J.: Astrophys. J. Lett. 196, L107 (1975).  https://doi.org/10.1086/181755 ADSCrossRefGoogle Scholar
  11. 11.
    Schnittman, J.D.: Phys. Rev. Lett. 113(26), 261102 (2014).  https://doi.org/10.1103/PhysRevLett.113.261102. arXiv:1410.6446 ADSCrossRefGoogle Scholar
  12. 12.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1992)MATHGoogle Scholar
  13. 13.
    Bañados, M., Silk, J., West, S.M.: Phys. Rev. Lett. 103(11), 111102 (2009).  https://doi.org/10.1103/PhysRevLett.103.111102. arXiv:0909.0169 ADSCrossRefGoogle Scholar
  14. 14.
    Visser, M.: ArXiv e-prints arXiv:0706.0622 (2007)
  15. 15.
  16. 16.
    Gao, S., Zhong, C.: Phys. Rev. D 84(4), 044006 (2011).  https://doi.org/10.1103/PhysRevD.84.044006. arXiv:1106.2852 ADSCrossRefGoogle Scholar
  17. 17.
    Stuchlík, Z., Schee, J.: Class. Quantum Gravity 30(7), 075012 (2013).  https://doi.org/10.1088/0264-9381/30/7/075012 ADSCrossRefGoogle Scholar
  18. 18.
    Harada, T., Kimura, M.: Class. Quantum Gravity 31(24), 243001 (2014).  https://doi.org/10.1088/0264-9381/31/24/243001. arXiv:1409.7502 ADSCrossRefGoogle Scholar
  19. 19.
    Berti, E., Cardoso, V., Gualtieri, L., Pretorius, F., Sperhake, U.: Phys. Rev. Lett. 103(23), 239001 (2009).  https://doi.org/10.1103/PhysRevLett.103.239001. arXiv:0911.2243 ADSCrossRefGoogle Scholar
  20. 20.
    Harada, T., Kimura, M.: Phys. Rev. D 83(2), 024002 (2011).  https://doi.org/10.1103/PhysRevD.83.024002. arXiv:1010.0962 ADSCrossRefGoogle Scholar
  21. 21.
    Jacobson, T., Sotiriou, T.P.: Phys. Rev. Lett. 104(2), 021101 (2010).  https://doi.org/10.1103/PhysRevLett.104.021101. arXiv:0911.3363 ADSCrossRefGoogle Scholar
  22. 22.
    Bejger, M., Piran, T., Abramowicz, M., Håkanson, F.: Phys. Rev. Lett. 109(12), 121101 (2012).  https://doi.org/10.1103/PhysRevLett.109.121101. arXiv:1205.4350 ADSCrossRefGoogle Scholar
  23. 23.
    Harada, T., Nemoto, H., Miyamoto, U.: Phys. Rev. D 86(2), 024027 (2012).  https://doi.org/10.1103/PhysRevD.86.024027. arXiv:1205.7088 ADSCrossRefGoogle Scholar
  24. 24.
    Ding, C., Liu, C., Quo, Q.: Int. J. Mod. Phys. D 22, 1350013 (2013).  https://doi.org/10.1142/S0218271813500132. arXiv:1301.1724 ADSCrossRefGoogle Scholar
  25. 25.
    Galajinsky, A.: Phys. Rev. D 88(2), 027505 (2013).  https://doi.org/10.1103/PhysRevD.88.027505 ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
  27. 27.
    Patil, M., Joshi, P.S., Nakao, Ki, Kimura, M., Harada, T.: EPL (Europhys. Lett.) 110, 30004 (2015).  https://doi.org/10.1209/0295-5075/110/30004. arXiv:1503.08331 ADSCrossRefGoogle Scholar
  28. 28.
    Grib, A.A., Pavlov, Y.V.: Gravit. Cosmol. 17, 42 (2011).  https://doi.org/10.1134/S0202289311010099. arXiv:1010.2052 ADSCrossRefGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
    Thorne, K.S.: Magic Without Magic. J-.A.- Wheeler: A Collection of Essays in Honor of his Sixtieth Birthday. W.H. Freeman, San Francisco (1972)Google Scholar
  32. 32.
    Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973).  https://doi.org/10.1103/PhysRevD.7.2333 ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975).  https://doi.org/10.1007/BF02345020 ADSCrossRefGoogle Scholar
  34. 34.
    Page, D.N.: Phys. Rev. D 14, 3260 (1976).  https://doi.org/10.1103/PhysRevD.14.3260 ADSCrossRefGoogle Scholar
  35. 35.
    Schnittman, J.D., Krolik, J.H.: Astrophys. J. 777, 11 (2013).  https://doi.org/10.1088/0004-637X/777/1/11. arXiv:1302.3214 ADSCrossRefGoogle Scholar
  36. 36.
    Schnittman, J.D., Silk, J.: Phys. Rev. D (2018) (in prep)Google Scholar
  37. 37.
    Leiderschneider, E., Piran, T.: Phys. Rev. D 93(4), 043015 (2016).  https://doi.org/10.1103/PhysRevD.93.043015. arXiv:1510.06764 ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
  39. 39.
    Berti, E., Brito, R., Cardoso, V.: Phys. Rev. Lett. 114(25), 251103 (2015).  https://doi.org/10.1103/PhysRevLett.114.251103. arXiv:1410.8534 ADSCrossRefGoogle Scholar
  40. 40.
  41. 41.
    Gariel, J., Santos, N.O., Silk, J.: Phys. Rev. D 90(6), 063505 (2014).  https://doi.org/10.1103/PhysRevD.90.063505. arXiv:1409.3381 ADSCrossRefGoogle Scholar
  42. 42.
    Harada, T., Ogasawara, K., Miyamoto, U.: Phys. Rev. D 94(2), 024038 (2016).  https://doi.org/10.1103/PhysRevD.94.024038. arXiv:1606.08107 ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Harada, T., Kimura, M.: Phys. Rev. D 83(8), 084041 (2011).  https://doi.org/10.1103/PhysRevD.83.084041. arXiv:1102.3316 ADSCrossRefGoogle Scholar
  44. 44.
  45. 45.
    Williams, R.K.: Phys. Rev. D 51, 5387 (1995).  https://doi.org/10.1103/PhysRevD.51.5387 ADSCrossRefGoogle Scholar
  46. 46.
    Williams, R.K.: ArXiv astrophysics e-prints (2002). arXiv:astro-ph/0203421
  47. 47.
    Gondolo, P., Silk, J.: Phys. Rev. Lett. 83, 1719 (1999).  https://doi.org/10.1103/PhysRevLett.83.1719. arXiv:astro-ph/9906391 ADSCrossRefGoogle Scholar
  48. 48.
    Sadeghian, L., Ferrer, F., Will, C.M.: Phys. Rev. D 88(6), 063522 (2013).  https://doi.org/10.1103/PhysRevD.88.063522. arXiv:1305.2619 ADSCrossRefGoogle Scholar
  49. 49.
    Ferrer, F., da Rosa, A.M., Will, C.M.: Phys. Rev. D 96(8), 083014 (2017).  https://doi.org/10.1103/PhysRevD.96.083014. arXiv:1707.06302 ADSCrossRefGoogle Scholar
  50. 50.
    Blandford, R.D., Znajek, R.L.: Mon. Not. R. Astron. Soc. 179, 433 (1977).  https://doi.org/10.1093/mnras/179.3.433 ADSCrossRefGoogle Scholar
  51. 51.
    Merritt, D., Milosavljević, M., Verde, L., Jimenez, R.: Phys. Rev. Lett. 88(19), 191301 (2002).  https://doi.org/10.1103/PhysRevLett.88.191301. arXiv:astro-ph/0201376 ADSCrossRefGoogle Scholar
  52. 52.
    Fields, B.D., Shapiro, S.L., Shelton, J.: Phys. Rev. Lett. 113(15), 151302 (2014).  https://doi.org/10.1103/PhysRevLett.113.151302. arXiv:1406.4856 ADSCrossRefGoogle Scholar
  53. 53.
    Shapiro, S.L., Paschalidis, V.: Phys. Rev. D 89(2), 023506 (2014).  https://doi.org/10.1103/PhysRevD.89.023506. arXiv:1402.0005 ADSCrossRefGoogle Scholar
  54. 54.
    Shapiro, S.L., Shelton, J.: Phys. Rev. D 93(12), 123510 (2016).  https://doi.org/10.1103/PhysRevD.93.123510. arXiv:1606.01248 ADSCrossRefGoogle Scholar
  55. 55.
    Feng, J.L., Kaplinghat, M., Yu, H.B.: Phys. Rev. D 82(8), 083525 (2010).  https://doi.org/10.1103/PhysRevD.82.083525. arXiv:1005.4678 ADSCrossRefGoogle Scholar
  56. 56.
    Reynolds, C.S., Nowak, M.A.: Phys. Rep. 377, 389 (2003).  https://doi.org/10.1016/S0370-1573(02)00584-7. arXiv:astro-ph/0212065 ADSCrossRefGoogle Scholar
  57. 57.
    Williams, A.J.: Phys. Rev. D 83(12), 123004 (2011).  https://doi.org/10.1103/PhysRevD.83.123004. arXiv:1101.4819 ADSCrossRefGoogle Scholar
  58. 58.
    Bañados, M., Hassanain, B., Silk, J., West, S.M.: Phys. Rev. D 83(2), 023004 (2011).  https://doi.org/10.1103/PhysRevD.83.023004. arXiv:1010.2724 ADSCrossRefGoogle Scholar
  59. 59.
    Ogasawara, K., Harada, T., Miyamoto, U., Igata, T.: Phys. Rev. D 95(12), 124019 (2017).  https://doi.org/10.1103/PhysRevD.95.124019. arXiv:1609.03022 ADSCrossRefGoogle Scholar
  60. 60.
    Spergel, D.N., Steinhardt, P.J.: Phys. Rev. Lett. 84, 3760 (2000).  https://doi.org/10.1103/PhysRevLett.84.3760. arXiv:astro-ph/9909386 ADSCrossRefGoogle Scholar
  61. 61.
    Chen, J., Zhou, Y.F.: J. Cosmol. Astro. Phys. 4, 017 (2013).  https://doi.org/10.1088/1475-7516/2013/04/017. arXiv:1301.5778 ADSCrossRefGoogle Scholar
  62. 62.
  63. 63.
    Press, W.H., Teukolsky, S.A.: Nature 238, 211 (1972).  https://doi.org/10.1038/238211a0 ADSCrossRefGoogle Scholar
  64. 64.
    Brito, R., Cardoso, V., Pani, P. (eds.): Superradiance, Lecture Notes in Physics, vol. 906. Springer, Berlin (2015)Google Scholar
  65. 65.
    Wagh, S.M., Dhurandhar, S.V., Dadhich, N.: Astrophys. J. 290, 12 (1985).  https://doi.org/10.1086/162952 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.NASA GSFCGreenbeltUSA

Personalised recommendations