Hawking radiation inside a Schwarzschild black hole

Research Article
  • 30 Downloads

Abstract

The boundary of any observer’s spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer’s spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law character of the Hawking radiation, coupled with conservation of energy–momentum, the trace anomaly, and the familiar behavior of Hawking radiation far from the black hole, leads to a complete description of the quantum energy–momentum inside a Schwarzschild black hole. The quantum energy–momentum near the singularity diverges as \(r^{-6}\), and consists of relativistic Hawking radiation and negative energy vacuum in the ratio \(3 : -\,2\). The classical back reaction of the quantum energy–momentum on the geometry, calculated using the Einstein equations, serves merely to exacerbate the singularity. All the results are consistent with traditional calculations of the quantum energy–momentum in 1 + 1 spacetime dimensions.

Keywords

Black holes Black hole interiors Hawking radiation Trace anomaly 

Notes

Acknowledgements

This research was supported in part by FQXI mini-grant FQXI-MGB-1626. I thank Prof. M. J. Duff for confirming that massive as well as massless fields should be taken into account in calculating the trace anomaly.

References

  1. 1.
    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973).  https://doi.org/10.1103/PhysRevD.7.2333 ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976).  https://doi.org/10.1103/PhysRevD.14.2460 ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993).  https://doi.org/10.1103/PhysRevD.48.3743 ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Maldacena, J.: The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Candelas, P.: Vaccum polarization in Schwarzschild spacetime. Phys. Rev. D 21, 2185 (1980)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)CrossRefMATHGoogle Scholar
  8. 8.
    Hofmann, D.: Quantum radiation from black holes. Ph.D. thesis, Vienna, Tech. U. (2002). http://alice.cern.ch/format/showfull?sysnb=2337526
  9. 9.
    Brout, R., Massar, S., Parentani, R., Spindel, P.: A primer for black hole quantum physics. Phys. Rep. 260, 329 (1995).  https://doi.org/10.1016/0370-1573(95)00008-5 ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fiziev, P.P.: On the exact solutions of the Regge–Wheeler equation in the Schwarzschild black hole interior (2006). arXiv:gr-qc/0603003
  11. 11.
    Fiziev, P.P.: Classes of exact solutions to Regge–Wheeler and Teukolsky equations (2009). arXiv:0902.1277 [gr-qc]
  12. 12.
    Fiziev, P.P.: Novel representation of the general Heun’s functions (2014). arXiv:1405.6837 [math-ph]
  13. 13.
    Davies, P.C.W., Fulling, S.A., Unruh, W.G.: Energy–momentum tensor near an evaporating black hole. Phys. Rev. D 13, 2720 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    Davies, P.C.W., Fulling, S.A.: Quantum vacuum energy in two dimensional space-times. Proc. R. Soc. Lond. A 354, 59 (1977)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chakraborty, S., Singh, S., Padmanabhan, T.: A quantum peek inside the black hole event horizon. JHEP 06, 192 (2015).  https://doi.org/10.1007/JHEP06(2015)192 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hodgkinson, L., Louko, J.: Static, stationary and inertial Unruh–DeWitt detectors on the BTZ black hole. Phys. Rev. D 86 (2012).  https://doi.org/10.1103/PhysRevD.86.064031
  17. 17.
    Carlip, S.: The (2 + 1)-dimensional black hole. Class. Quant. Gravity 12, 2853 (1995).  https://doi.org/10.1088/0264-9381/12/12/005 ADSCrossRefMATHGoogle Scholar
  18. 18.
    Hodgkinson, L., Louko, J., Ottewill, A.C.: Static detectors and circular-geodesic detectors on the Schwarzschild black hole. Phys. Rev. D 89, 104002 (2014).  https://doi.org/10.1103/PhysRevD.89.104002 ADSCrossRefGoogle Scholar
  19. 19.
    Hodgkinson, L.: Particle detectors in curved spacetime quantum field theory. Ph.D. thesis (2013)Google Scholar
  20. 20.
    Juárez-Aubry, B.A.: Asymptotics in the time-dependent Hawking and Unruh effects. Ph.D. thesis (2017)Google Scholar
  21. 21.
    Saini, A., Stojkovic, D.: Hawking-like radiation and the density matrix for an infalling observer during gravitational collapse. Phys. Rev. D 94, 064028 (2016).  https://doi.org/10.1103/PhysRevD.94.064028 ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Hiscock, W.A., Larson, S.L., Anderson, P.R.: Semiclassical effects in black hole interiors. Phys. Rev. D 56, 3571 (1997).  https://doi.org/10.1103/PhysRevD.56.3571 ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Christensen, S.M., Fulling, S.A.: Trace anomalies and the Hawking effect. Phys. Rev. D 15, 2088 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    Visser, M.: Gravitational vacuum polarization. 4: Energy conditions in the Unruh vacuum. Phys. Rev. D 56, 936 (1997).  https://doi.org/10.1103/PhysRevD.56.936 ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Bardeen, J.M.: Black hole evaporation without an event horizon (2014). arXiv:1406.4098 [gr-qc]
  26. 26.
    Hamilton, A.J.S., Polhemus, G.: Stereoscopic visualization in curved spacetime: seeing deep inside a black hole. N. J. Phys. 12, 123027 (2010).  https://doi.org/10.1088/1367-2630/12/12/123027 CrossRefGoogle Scholar
  27. 27.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)CrossRefMATHGoogle Scholar
  28. 28.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Visser, M.: Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D 12, 649 (2003).  https://doi.org/10.1142/S0218271803003190 ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Co, London (1973)Google Scholar
  31. 31.
    Sriramkumar, L., Padmanabhan, T.: Probes of the vacuum structure of quantum fields in classical backgrounds. Int. J. Mod. Phys. D 11, 1 (2002).  https://doi.org/10.1142/S0218271802001354 ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Howard, K.W.: Vacuum \(\langle {T}_\mu ^\nu \rangle \) in schwarzschild spacetime. Phys. Rev. D 30, 2532 (1984)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Duff, M.J.: Twenty years of the Weyl anomaly. Class. Quant. Gravity 11, 1387 (1994).  https://doi.org/10.1088/0264-9381/11/6/004 ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Hawking, S.W., Hertog, T., Reall, H.S.: Trace anomaly driven inflation. Phys. Rev. D 63, 083504 (2001).  https://doi.org/10.1103/PhysRevD.63.083504 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Asorey, M., Gorbar, E.V., Shapiro, I.L.: Universality and ambiguities of the conformal anomaly. Class. Quant. Gravity 21, 163 (2003).  https://doi.org/10.1088/0264-9381/21/1/011 ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Christensen, S.M., Duff, M.J.: Axial and conformal anomalies for arbitrary spin in gravity and supergravity. Phys. Lett. 76B, 571 (1978)ADSCrossRefGoogle Scholar
  37. 37.
    Kolb, E.W., Turner, M.S.: The early universe. Front. Phys. 69, 1 (1990)ADSMathSciNetMATHGoogle Scholar
  38. 38.
    Page, D.N.: Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D 13, 198 (1976)ADSCrossRefGoogle Scholar
  39. 39.
    Grumiller, D., Kummer, W., Vassilevich, D.V.: Dilaton gravity in two-dimensions. Phys. Rep. 369, 327 (2002).  https://doi.org/10.1016/S0370-1573(02)00267-3 ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Regge, T., Wheeler, J.A.: Stability of the Schwarzschild singularity. Phys. Rev. 108, 1063 (1957)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Kruskal, M.D.: Maximal extension of Schwarzschild metric. Phys. Rev. 119, 1743 (1960)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Szekeres, G.: On the singularities of a Riemann manifold. Publ. Mat. Debr. 7, 285 (1960)MATHGoogle Scholar
  43. 43.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1983)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.JILAUniversity of ColoradoBoulderUSA

Personalised recommendations