Skip to main content
Log in

Existence and stability of circular orbits in static and axisymmetric spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The existence and stability of timelike and null circular orbits (COs) in the equatorial plane of general static and axisymmetric (SAS) spacetime are investigated in this work. Using the fixed point approach, we first obtained a necessary and sufficient condition for the non-existence of timelike COs. It is then proven that there will always exist timelike COs at large \(\rho \) in an asymptotically flat SAS spacetime with a positive ADM mass and moreover, these timelike COs are stable. Some other sufficient conditions on the stability of timelike COs are also solved. We then found the necessary and sufficient condition on the existence of null COs. It is generally shown that the existence of timelike COs in SAS spacetime does not imply the existence of null COs, and vice-versa, regardless whether the spacetime is asymptotically flat or the ADM mass is positive or not. These results are then used to show the existence of timelike COs and their stability in an SAS Einstein-Yang-Mills-Dilaton spacetimes whose metric is not completely known. We also used the theorems to deduce the existence of timelike and null COs in some known SAS spacetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Del Zanna, L., Amato, E., Bucciantini, N.: Axially symmetric relativistic mhd simulations of pulsar wind nebulae in supernova remnants-on the origin of torus and jet-like features. Astron. Astrophys. 421(3), 1063–1073 (2004). https://doi.org/10.1051/0004-6361:20035936. [arXiv:astro-ph/0404355]

    Article  ADS  Google Scholar 

  2. Wang, L., et al.: The axially symmetric ejecta of supernova 1987a. Astrophys. J. 579, 671 (2002). https://doi.org/10.1086/342824. [arXiv:astro-ph/0205337]

    Article  ADS  Google Scholar 

  3. Radu, E.: Static axially symmetric solutions of Einstein–Yang–Mills equations with a negative cosmological constant: the regular case. Phys. Rev. D 65(4), 044005 (2002). https://doi.org/10.1103/PhysRevD.65.044005. [arXiv:gr-qc/0109015]

    Article  ADS  MathSciNet  Google Scholar 

  4. Hartmann, B., Kleihaus, B., Kunz, J.: Axially symmetric monopoles and black holes in Einstein–Yang–Mills–Higgs theory. Phys. Rev. D 65(2), 024027 (2001). https://doi.org/10.1103/PhysRevD.65.024027. [arXiv:hep-th/0108129]

    Article  ADS  MathSciNet  Google Scholar 

  5. Kleihaus, B., Kunz, J.: Static axially symmetric solutions of Einstein–Yang–Mills–Dilaton theory. Phys. Rev. Lett. 78(13), 2527 (1997). https://doi.org/10.1103/PhysRevLett.78.2527. [arXiv:hep-th/9612101]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Kleihaus, B., Kunz, J.: Static axially symmetric Einstein–Yang–Mills–Dilaton solutions. ii. black hole solutions. Phys. Rev. D 57(10), 6138 (1998). https://doi.org/10.1103/PhysRevD.57.6138. [arXiv:gr-qc/9712086]

    Article  ADS  MathSciNet  Google Scholar 

  7. Kleihaus, B., Kunz, J.: Static axially symmetric Einstein–Yang–Mills–Dilaton solutions: 1. regular solutions. Phys. Rev. D 57(2), 834 (1998). https://doi.org/10.1103/PhysRevD.57.834. [arXiv:gr-qc/9707045]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Capozziello, S., De Laurentis, M., Stabile, A.: Axially symmetric solutions in f (r)-gravity. Class. Quant. Grav. 27(16), 165008 (2010). https://doi.org/10.1088/0264-9381/27/16/165008. [arXiv:0912.5286 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kuhfittig, P.K.F.: Axially symmetric rotating traversable wormholes. Phys. Rev. D 67(6), 064015 (2003). https://doi.org/10.1103/PhysRevD.67.064015. [arXiv:gr-qc/0401028]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Reddy, D.R.K., Naidu, R.L., Rao, V.U.M.: Axially symmetric cosmic strings in a scalar-tensor theory. Astrophys. Space Sci. 306(4), 185–188 (2006)

    Article  ADS  MATH  Google Scholar 

  11. Reddy, D.R.K., Subba Rao, M.V.: Axially symmetric cosmic strings and domain walls in lyra geometry. Astrophys. Space Sci. 302(1), 157–160 (2006)

    Article  ADS  Google Scholar 

  12. Vlachynsky, E.J., Tresguerres, R., Obukhov, Y.N., Hehl, F.W.: An axially symmetric solution of metric-affine gravity. Class. Quant. Grav. 13(12), 3253 (1996). https://doi.org/10.1088/0264-9381/13/12/016. [arXiv:gr-qc/9604035]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. [arXiv:1602.03837 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  14. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al.: Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103. [arXiv:1606.04855 [gr-qc]]

    Article  ADS  Google Scholar 

  15. Hackmann, E., Lämmerzahl, C.: Observables for bound orbital motion in axially symmetric space-times. Phys. Rev. D 85(4), 044049 (2012). https://doi.org/10.1103/PhysRevD.85.044049. [arXiv:1107.5250 [gr-qc]]

    Article  ADS  Google Scholar 

  16. Sanabria-Gomez, J.D., Hernandez-Pastora, J.L., Dubeibe, F.L.: Innermost stable circular orbits around magnetized rotating massive stars. Phys. Rev. D 82, 124014 (2010)

    Article  ADS  Google Scholar 

  17. Thomas, J., Saglia, R.P., Bender, R., Thomas, D., Gebhardt, K., Magorrian, J., Richstone, D.: Mapping stationary axisymmetric phase-space distribution functions by orbit libraries. Mon. Not. R. Aston. Soc. 353(2), 391–404 (2004). https://doi.org/10.1103/PhysRevD.94.064042. [arXiv:1605.05816 [gr-qc]]

    Article  ADS  Google Scholar 

  18. Shibata, M., Sasaki, M.: Innermost stable circular orbits around relativistic rotating stars. Phys. Rev. D 58(10), 104011 (1998). https://doi.org/10.1103/PhysRevD.58.104011. [arXiv:gr-qc/9807046]

    Article  ADS  Google Scholar 

  19. Donati, J.-F., Paletou, F., Bouvier, J., Ferreira, J.: Direct detection of a magnetic field in the innermost regions of an accretion disk. Nature 438(7067), 466–469 (2005). https://doi.org/10.1038/nature04253. [arXiv:astro-ph/0511695]

    Article  ADS  Google Scholar 

  20. Abramowicz, M.A., Jaroszyński, M., Kato, S., Lasota, J.-P., Różańska, A., Sądowski, A.: Leaving the innermost stable circular orbit: the inner edge of a black-hole accretion disk at various luminosities. Astron. Astrophys. 521, A15 (2010). https://doi.org/10.1051/0004-6361/201014467. [arXiv:1003.3887 [astro-ph.HE]]

    Article  Google Scholar 

  21. Letelier, P.S.: Stability of circular orbits of particles moving around black holes surrounded by axially symmetric structures. Phys. Rev. D 68(10), 104002 (2003). https://doi.org/10.1103/PhysRevD.68.104002. [arXiv:gr-qc/0309033]

    Article  ADS  MathSciNet  Google Scholar 

  22. López-Suspes, F., González, G.A.: Equatorial circular orbits of neutral test particlesin weyl spacetimes. Braz. J. Phys. 44(4), 385–397 (2014). https://doi.org/10.1007/s13538-014-0216-8. [arXiv:1104.0346 [gr-qc]]

    Article  ADS  Google Scholar 

  23. Dolan, S.R., Shipley, J.O.: Stable photon orbits in stationary axisymmetric electrovacuum spacetimes. Phys. Rev. D 94(4), 044038 (2016). https://doi.org/10.1103/PhysRevD.94.044038. [arXiv:1104.0346 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  24. Beheshti, S., Gasperín, E.: Marginally stable circular orbits in stationary axisymmetric spacetimes. Phys. Rev. D 94(2), 024015 (2016). https://doi.org/10.1103/PhysRevD.94.024015. [arXiv:1512.08707 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  25. Jia, J., Liu, J., Liu, X., Mo, Z., Pang, X., Wang, Y., Yang, N.: Existence and stability of circular orbits in static and spherically symmetric spacetimes. Gen. Relat. Gravit. 50(2), 17 (2018). [arXiv:1702.05889 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  26. Beig, R., Schmidt, B.: Time-independent gravitational fields. Lect. Notes Phys. 540, 325–372 (2000). https://doi.org/10.1007/3-540-46580-4. p342, Sec. 3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Semerák, O.: Towards gravitating discs around stationary black holes. Gravitation: following the Prague inspiration, p. 111 (2002). https://doi.org/10.1142/9789812776938_0004gr-qc/0204025

  28. Mars, M.: Stability of marginally outer trapped surfaces and geometric inequalities. Fundam. Theor. Phys. 177, 191–208 (2014). https://doi.org/10.1007/978-3-319-06349-2_8

    MathSciNet  MATH  Google Scholar 

  29. Pradhan, P.: Stability analysis and quasinormal modes of reissner-nordstrøm space–time via lyapunov exponent. Pramana 87(1), 1–9 (2016). https://doi.org/10.1007/s12043-016-1214-x. [arXiv:1205.5656 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  30. Ono, T., Suzuki, T., Asada, H.: Nonradial stability of marginal stable circular orbits in stationary axisymmetric spacetimes. Phys. Rev. D 94(6), 064042 (2016). https://doi.org/10.1103/PhysRevD.94.064042. [arXiv:1605.05816 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  31. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  32. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of J. Jia and X. Pang are supported by the NNSF China 11504276 & 11547310 and MOST China 2014GB109004. The work of N. Yang is supported by the NNSF China 31571797 & 31401649.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Jia.

Appendices

Appendix A: Sufficient conditions for (in-)stabilities of timelike COs

When Eq. (38) is replaced by

$$\begin{aligned} h(\rho )=\chi \rho ^2A^{\prime 3}~(\chi \ne 0), \end{aligned}$$
(A.1)

an implicit solution can be obtained

$$\begin{aligned} \frac{\sqrt{1+8\chi }A^{\frac{3}{2}+\frac{\sqrt{1+8\chi }}{2}}}{2\rho ^2} -c_2 A^{\sqrt{1+8\chi }}+c_1=0. \end{aligned}$$
(A.2)

In particular, when \(\chi =1\) or \(\chi =-2/25\), two explicit solution can be found

$$\begin{aligned} \chi= & {} 1, \quad A (\rho )=\left( {\frac{2c_1\rho ^2}{2c_2\rho ^2-3}}\right) ^{1/3} \end{aligned}$$
(A.3)
$$\begin{aligned} \chi= & {} -\frac{2}{25}, \quad A(\rho )=\left( \frac{1}{3} x+\frac{10}{3}x^{-1}\right) ^{5/3},\nonumber \\ x= & {} \left( 5\sqrt{81c_1^2\rho ^4-40c_2^3\rho ^6}-45c_1\rho ^2\right) ^{1/3}. \end{aligned}$$
(A.4)

The former will only have stable COs (if any) and the later will only have unstable COs (if any) and none of them will allow MSCOs.

When Eq. (38) is replaced by

$$\begin{aligned} h(\rho )=\chi A^2A^\prime ~(\chi \ne 0), \end{aligned}$$
(A.5)

an implicit solution can be obtained

$$\begin{aligned} ( 2-\chi )\left( c_1- c_2 A^{\sqrt{1+4\chi }}\right) \rho ^5 + \sqrt{1+4\chi }A^{\frac{3}{2}+\frac{\sqrt{1+4\chi }}{2}}\rho ^{\chi +3}=0. \end{aligned}$$
(A.6)

In particular, when \(\chi =-4/25\), an explicit solution can be found

$$\begin{aligned}&A(\rho )=\left[ \left( y/5+6c_2\rho ^{\frac{4}{25}} y^{-1} \right) \rho \right] ^{5/3},\nonumber \\&y=\left( 15\sqrt{225c_1^2- 120c_2^3 \rho ^{\frac{54}{25}}}-225c_1 \right) ^{1/3} \rho ^{-\frac{7}{25}}. \end{aligned}$$
(A.7)

This solution will only have unstable COs (if any) and no MSCOs.

When Eq. (38) is replaced by

$$\begin{aligned} h(\rho )=\chi \rho AA^{\prime 2} ~(\chi \ne 0), \end{aligned}$$
(A.8)

an implicit solution can be obtained

$$\begin{aligned} c_1- c_2 A^{\sqrt{\chi ^2+6\chi +1}}+ \frac{\sqrt{\chi ^2+6\chi +1} A^{\frac{\chi }{2}+ \frac{3}{2}+\frac{\sqrt{\chi ^2+6\chi +1}}{2}}}{2\rho ^2}=0. \end{aligned}$$
(A.9)

In particular, when \(\chi =-3+5\sqrt{3}/3\), an explicit solution can be found

$$\begin{aligned}&A(\rho )=\left( \frac{u}{3}+2\sqrt{3}c_2\rho ^2 u^{-1}\right) ^{\sqrt{3}},\nonumber \\&u=\left( 9\sqrt{27{c_1}^2\rho ^4-8\sqrt{3}c_2^3\rho ^6} -27\sqrt{3}c_1\rho ^2\right) ^{1/3}. \end{aligned}$$
(A.10)

This solution will only have unstable COs (if any) and no MSCOs.

One can also replace Eq. (38) by

$$\begin{aligned} h(\rho )=\chi \rho A^2A^{\prime \prime } ~(\chi \ne 0).\end{aligned}$$
(A.11)

Although the sign of \(A^{\prime \prime }\) and consequently that of the right hand side cannot be fixed before solving \(A(\rho )\), this transformation do allow the equation to be solvable and then a determination of \(A^{\prime \prime }\)’s sign. The implicit solution to this equation is given by

$$\begin{aligned} ( \chi +2 ) c_2 A^{-\frac{1+\chi }{\chi -1}}+ ( 1+\chi ) A^{-\frac{\chi +2}{\chi -1}}\rho ^{\frac{\chi +2}{\chi -1}} +c_1=0. \end{aligned}$$
(A.12)

In particular, when \(\chi =-3\), two explicit solution can be found

$$\begin{aligned}&A(\rho )=\left[ \left( \rho ^{1/4}+\sqrt{c_1c_2+\sqrt{\rho }}\right) /c_1\right] ^4, \end{aligned}$$
(A.13)
$$\begin{aligned}&A(\rho )=\left[ \left( -\rho ^{1/4}+\sqrt{c_1c_2+\sqrt{\rho }}\right) /c_1\right] ^4 , \end{aligned}$$
(A.14)

where in both cases \(c_1c_2>0\). For the former solution, since \(A^{\prime \prime }<0\) it will only have unstable COs (if any) and no MSCOs. For the later one, \(A^{\prime \prime }>0\) and it will only have stable COs (if any) and no MSCOs. When \(\chi =-1/2\), or \(\chi =-5/2\), Eq. (A.12) can also generate some explicit solutions of \(A(\rho )\). However, since sign of their second derivatives cannot be determined, and we will not list them here.

Appendix B: Proof of Theorem F

To prove the theorem, we define a \(\mu (\rho )\) first

$$\begin{aligned} \mu (\rho )=A(\rho )/\rho \end{aligned}$$
(B.1)

such that

$$\begin{aligned} \mu ^\prime (\rho )=\left[ A^\prime (\rho )\rho -A(\rho ) \right] /\rho ^2 .\end{aligned}$$
(B.2)

Then using Eq. (43) it is seen that the existence of a null CO is equivalent to the existence of a point such that \(\mu ^\prime (\rho )=0\).

Now since \(A(\rho =a)=0\), we have

$$\begin{aligned} \mu ^\prime (\rho =a)=A^\prime (\rho =a)/a^2. \end{aligned}$$
(B.3)

Since \(A(\rho )>0\) for at least the neighborhood (a,  b) of \(\rho \), we must have \(A^\prime (\rho =a)\ge 0\). Therefore

$$\begin{aligned} \mu ^\prime (\rho =a)\ge 0 .\end{aligned}$$
(B.4)

If the equal sign is true, then the CO exists. If it is not true, we further show by contradiction that \(\mu ^\prime (\rho )\) cannot be positive definite for \(\rho \in [a,~\infty )\) and therefore due to the continuity of \(\mu ^\prime (\rho )\) there must exist a point \(\rho _*\) satisfying \(\mu ^\prime (\rho _*)=0\), which is again a CO. Suppose \(\mu ^\prime (\rho )>0\) for all \(\rho \in [a,~\infty )\), then clearly \(A(\rho )=\mu (\rho )\rho \) will diverge faster than \(\rho ^1\), which contradicts the assumption.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Pang, X. & Yang, N. Existence and stability of circular orbits in static and axisymmetric spacetimes. Gen Relativ Gravit 50, 41 (2018). https://doi.org/10.1007/s10714-018-2364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2364-6

Keywords

Navigation