Skip to main content

Bouncing cosmology inspired by regular black holes


In this article, we present a bouncing cosmology inspired by a family of regular black holes. This scale-dependent cosmology deviates from the cosmological principle by means of a scale factor which depends on the time and the radial coordinate as well. The model is isotropic but not perfectly homogeneous. That is, this cosmology describes a universe almost homogeneous only for large scales, such as our observable universe.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Besides the scalars, another criterion to determine the spacetime regularity depends on the nonexistence of incomplete geodesics. In this sense, a nonsingular or regular spacetime is defined as geodesically complete. As we can see in Wald’s book ([29], chapter 9), there are geometries with scalars which diverge but such spacetimes are geodesically complete. An example for this case is found in Ref. [30], where a wormhole geometry has problem with scalars but it is geodesically complete. However, the standard FLRW cosmology presents the two problems: the geodesics are incomplete and the scalars diverge.


  1. 1.

    Novello, M., Perez Bergliaffa, S.E.: Bouncing cosmologies. Phys. Rept. 463, 127 (2008)

    Article  Google Scholar 

  2. 2.

    Joshi, P.S.: Spacetime singularities. In: Ashtekar, A., Petkov, V. (eds.) Springer Handbook of Spacetime, p. 409. Springer, Berlin (2014)

    Google Scholar 

  3. 3.

    Riess, A.G., et al.: (Supernova search team collaboration): observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    ADS  Article  Google Scholar 

  4. 4.

    Perlmutter, S., et al.: (Supernova cosmology project collaboration): measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    ADS  Article  MATH  Google Scholar 

  5. 5.

    Bardeen, J. M.: Non-singular general-relativistic collapse. In: Conference proceedings of GR5, p. 174, Tbilisi, URSS (1968)

  6. 6.

    Ansoldi, S.: Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources. In: Proceedings of BH2, dynamics and thermodynamics of black holes and naked singularities, Milano, Italy (2007)

  7. 7.

    Lemos, J.P.S., Zanchin, V.T.: Regular black holes: electrically charged solutions, Reissner–Nordström outside a de sitter core. Phys. Rev. D 83, 124005 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    Sakharov, A.D.: Sov. Phys. JETP 22, 241 (1966)

    ADS  Google Scholar 

  9. 9.

    Gliner, E.B.: Sov. Phys. JETP 22, 378 (1966)

    ADS  Google Scholar 

  10. 10.

    Hayward, S.A.: Formation and evaporation of non-singular black holes. Phys. Rev. Lett. 96, 031103 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    Neves, J.C.S.: Deforming regular black holes. Int. J. Mod. Phys. A 32, 1750112 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    Smailagic, A., Spallucci, E.: “Kerrr” black hole: the lord of the string. Phys. Lett. B 688, 82 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Modesto, L., Nicolini, P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Toshmatov, B., Ahmedov, B., Abdujabbarov, A., Stuchlik, Z.: Rotating regular black hole solution. Phys. Rev. D 89, 104017 (2014)

    ADS  Article  MATH  Google Scholar 

  16. 16.

    Azreg-Ainou, M.: Generating rotating regular black hole solutions without complexification. Phys. Rev. D 90, 064041 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    Neves, J.C.S.: Note on regular black holes in a brane world. Phys. Rev. D 92, 084015 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Neves, J.C.S., Saa, A.: Regular rotating black holes and the weak energy condition. Phys. Lett. B 734, 44 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Lehners, J.L.: Ekpyrotic and cyclic cosmology. Phys. Rept. 465, 223 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Brandenberger, R. H.: The matter bounce alternative to inflationary cosmology. arXiv:1206.4196

  21. 21.

    Ijjas, A., Steinhardt, P.J.: Inflationary paradigm in trouble after Planck 2013. Phys. Lett. B 723, 261 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    Wu, K.K.S., Lahav, O., Rees, M.J.: The large-scale smoothness of the universe. Nature 397, 225 (1999)

    ADS  Article  Google Scholar 

  23. 23.

    Bolejko, K., Célérier, M.N., Krasinski, A.: Inhomogeneous cosmological models: exact solutions and their applications. Class. Quantum Grav. 28, 164002 (2011)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Ruiz, E., Senovilla, J.M.M.: General class of inhomogeneous perfect-fluid solutions. Phys. Rev. D 45, 1995 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Senovilla, J.M.M.: New class of inhomogeneous cosmological perfect-fluid solutions without big-bang singularity. Phys. Rev. Lett. 64, 2219 (1990)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Nemiroff, R.J., Joshi, R., Patla, B.R.: An exposition on friedmann cosmology with negative energy densities. JCAP 1506, 006 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Hernandez Jr., W.C.: Material sources for the kerr metric. Phys. Rev. 159, 1070 (1967)

    ADS  Article  Google Scholar 

  28. 28.

    Kim, C.W., Song, J.: A proposed scale-dependent cosmology for the inhomogeneous cosmology. Int. J. Mod. Phys. D 5, 293 (1996)

    ADS  Article  Google Scholar 

  29. 29.

    Wald, R.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  30. 30.

    Olmo, G.J., Rubiera-Garcia, D., Sanchez-Puente, A.: Geodesic completeness in a wormhole spacetime with horizons. Phys. Rev. D 92, 044047 (2015)

    ADS  MathSciNet  Article  Google Scholar 

Download references


This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (Grant No. 2013/03798-3). I would like to thank Alberto Saa and an anonymous referee for comments and suggestions.

Author information



Corresponding author

Correspondence to J. C. S. Neves.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neves, J.C.S. Bouncing cosmology inspired by regular black holes. Gen Relativ Gravit 49, 124 (2017).

Download citation


  • Bouncing cosmology
  • Singularity
  • Regular black holes
  • Cosmological principle