Description of the evolution of inhomogeneities on a dark matter halo with the Vlasov equation


We use a direct numerical integration of the Vlasov equation in spherical symmetry with a background gravitational potential to determine the evolution of a collection of particles in different models of a galactic halo in order to test its stability against perturbations. Such collection is assumed to represent a dark matter inhomogeneity which is represented by a distribution function defined in phase-space. Non-trivial stationary states are obtained and determined by the virialization of the system. We describe some features of these stationary states by means of the properties of the final distribution function and final density profile. We compare our results using the different halo models and find that the NFW halo model is the most stable of them, in the sense that an inhomogeneity in this halo model requires a shorter time to virialize.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24


  1. 1.

    When instead of particles moving in an external potential we consider the case of self-gravitating particles, then the virial theorem can also be derived, and in that case we do find that Eq. (2.30) is satisfied with \(n=-1\) since the mutual forces between the particles are purely gravitational.


  1. 1.

    MarrodÃąn Undagoitia, T., Rauch, L.: Dark matter direct-detection experiments. J. Phys. G43(1), 013001 (2016). doi:10.1088/0954-3899/43/1/013001

    ADS  Article  Google Scholar 

  2. 2.

    Akerib, D.S., et al.: The large underground xenon (LUX) experiment. Nucl. Instrum. Methods A704, 111 (2013). doi:10.1016/j.nima.2012.11.135

    ADS  Article  Google Scholar 

  3. 3.

    Bernabei, R., et al.: The DAMA/LIBRA apparatus. Nucl. Instrum. Methods A592, 297 (2008). doi:10.1016/j.nima.2008.04.082

    ADS  Article  Google Scholar 

  4. 4.

    Akimov, D.Y., et al.: The ZEPLIN-III dark matter detector: instrument design, manufacture and commissioning. Astropart. Phys. 27, 46 (2007). doi:10.1016/j.astropartphys.2006.09.005

    ADS  Article  Google Scholar 

  5. 5.

    Aprile, E., Angle, J., Arneodo, F., Baudis, L., Bernstein, A., Bolozdynya, A., Brusov, P., Coelho, L.C.C., Dahl, C.E., DeViveiros, L., Ferella, A.D., Fernandes, L.M.P., Fiorucci, S., Gaitskell, R.J., Giboni, K.L., Gomez, R., Hasty, R., Kastens, L., Kwong, J., Lopes, J.A.M., Madden, N., Manalaysay, A., Manzur, A., McKinsey, D.N., Monzani, M.E., Ni, K., Oberlack, U., Orboeck, J., Orlandi, D., Plante, G., Santorelli, R., dos Santos, J.M.F., Shagin, P., Shutt, T., Sorensen, P., Schulte, S., Tatananni, E., Winant, C., Yamashita, M.: Design and performance of the XENON10 dark matter experiment. Astropart. Phys. 34, 679 (2011). doi:10.1016/j.astropartphys.2011.01.006

    ADS  Article  Google Scholar 

  6. 6.

    Barreto, J., et al.: Direct search for low mass dark matter particles with CCDs. Phys. Lett. B 711, 264 (2012). doi:10.1016/j.physletb.2012.04.006

    ADS  Article  Google Scholar 

  7. 7.

    Chavarria, A.E., et al.: DAMIC at SNOLAB. Phys. Procedia 61, 21 (2015). doi:10.1016/j.phpro.2014.12.006

    ADS  Article  Google Scholar 

  8. 8.

    Aguilar-Arevalo, A., et al.: First direct detection constraints on eV-scale hidden-photon dark matter with DAMIC at SNOLAB. Phys. Rev. Lett. (2016) (submitted to)

  9. 9.

    Aguilar-Arevalo, A., et al.: Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Phys. Rev. D 94(8), 082006 (2016). doi:10.1103/PhysRevD.94.082006

    ADS  Article  Google Scholar 

  10. 10.

    Agnese, R., et al.: Low-Mass Dark Matter Search with CDMSlite. Phys. Rev. D (2017) (submitted to)

  11. 11.

    de Lima Rodrigues, R.: The quantum mechanics SUSY algebra: an introductory review (2002)

  12. 12.

    Cabral-Rosetti, L.G., Mondragon, M., Reyes Perez, E.: Toroidal dipole moment of the lightest neutralino in the MSSM. J. Phys. Conf. Ser. 315, 012007 (2011). doi:10.1088/1742-6596/315/1/012007

    Article  Google Scholar 

  13. 13.

    Biswas, S., Gabrielli, E., Heikinheimo, M., Mele, B.: Dark-photon searches via Higgs-boson production at the LHC. Phys. Rev. D 93(9), 093011 (2016). doi:10.1103/PhysRevD.93.093011

    ADS  Article  Google Scholar 

  14. 14.

    Barranco, J., Bernal, A., Núñez, D.: Dark matter equation of state from rotational curves of galaxies. Mon. Not. R. Astron. Soc. 449(1), 403 (2015). doi:10.1093/mnras/stv302

    ADS  Article  Google Scholar 

  15. 15.

    Matos, T., Guzman, F.S., Urena-Lopez, L.A.: Scalar field as dark matter in the universe. Class. Quantum Gravity 17, 1707 (2000). doi:10.1088/0264-9381/17/7/309

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Matos, T., Urena-Lopez, L.A.: Scalar field dark matter, cross section and Planck-scale physics. Phys. Lett. B 538, 246 (2002). doi:10.1016/S0370-2693(02)02002-6

    ADS  Article  Google Scholar 

  17. 17.

    Matos, T., Bernal, A., Nunez, D.: Flat central density profiles from scalar field dark matter halo. Rev. Mex. Astron. Astrofis. 44, 149 (2008)

    ADS  Google Scholar 

  18. 18.

    Navarro, J.F., Frenk, C.S., White, S.D.M.: The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996). doi:10.1086/177173

    ADS  Article  Google Scholar 

  19. 19.

    Harker, G., Cole, S., Helly, J., Frenk, C., Jenkins, A.: A marked correlation function analysis of halo formation times in the millennium simulation. Mon. Not. R. Astron. Soc. 367, 1039 (2006). doi:10.1111/j.1365-2966.2006.10022.x

    ADS  Article  Google Scholar 

  20. 20.

    Athanassoula, E., Fady, E., Lambert, J.C., Bosma, A.: Optimal softening for force calculations in collisionless N-body simulations. Mon. Not. R. Astron. Soc. 314(3), 475 (2000). doi:10.1046/j.1365-8711.2000.03316.x

    ADS  Article  Google Scholar 

  21. 21.

    Dehnen, W.: Towards optimal softening in three-dimensional N-body codes I. Minimizing the force error. Mon. Not. R. Astron. Soc. 324(2), 273 (2001). doi:10.1046/j.1365-8711.2001.04237.x

    ADS  Article  Google Scholar 

  22. 22.

    Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. Hilger, Bristol (1988).

  23. 23.

    Bagla, J.S.: Cosmological N-body simulation: techniques, scope and status. Curr. Sci. 88, 1088 (2005)

    ADS  Google Scholar 

  24. 24.

    Binney, J., Tremaine, S.: Galactic dynamics, 2nd edn. Princeton University Press, Princeton, NJ, USA (2008).

  25. 25.

    Colombi, S., Sousbie, T., Peirani, S., Plum, G., Suto, Y.: Vlasov versus N-body: the Henon sphere. Mon. Not. R. Astron. Soc. 450(4), 3724 (2015). doi:10.1093/mnras/stv819

    ADS  Article  Google Scholar 

  26. 26.

    Andreasson, H.: The Einstein–Vlasov system/kinetic theory. Living Rev. Rel. 8, 2 (2005). doi:10.12942/lrr-2005-2

    Article  Google Scholar 

  27. 27.

    Shapiro, S.L., Teukolsky, S.A.: Black holes, white dwarfs, and neutron stars: the physics of compact objects. Research supported by the National Science Foundation, Wiley, New York (1983).

  28. 28.

    Domínguez-Fernández, P.: On particle dynamics: Vlasov equation and dark matter. Bachelor thesis, UNAM-Mexico (2015)

  29. 29.

    Jiménez-Vázquez, E.: Numerical simulation of the Vlasov–Poisson system in spherical symmetry. Bachelor thesis, UNAM-Mexico (2016)

  30. 30.

    Kuzio de Naray, R., McGaugh, S.S., Mihos, J.C.: Constraining the NFW potential with observations and modeling of LSB galaxy velocity fields. Astrophys. J. 692, 1321 (2009). doi:10.1088/0004-637X/692/2/1321

    ADS  Article  Google Scholar 

  31. 31.

    Salucci, P., Burkert, A.: Dark matter scaling relations. Astrophys. J. 537, L9 (2000). doi:10.1086/312747

    ADS  Article  Google Scholar 

  32. 32.

    Liu, W.H., Fu, Y.N., Deng, Z.G., Huang, J.H.: An equilibrium dark matter halo with the Burkert profile. Publ. Astron. Soc. Jpn. 57, 541 (2005). doi:10.1093/pasj/57.4.541

    ADS  Article  Google Scholar 

  33. 33.

    Rubin, V.C., Thonnard, N., Ford Jr., W.K.: Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J. 238, 471 (1980). doi:10.1086/158003

    ADS  Article  Google Scholar 

  34. 34.

    Leveque, R.J.: Numerical Methods for Conservation Laws. Birkhauser Verlag, Basel (1992)

    Google Scholar 

  35. 35.

    Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Are black holes a serious threat to scalar field dark matter models? Phys. Rev. D 84, 083008 (2011). doi:10.1103/PhysRevD.84.083008

    ADS  Article  Google Scholar 

  36. 36.

    Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Schwarzschild black holes can wear scalar wigs. Phys. Rev. Lett. 109, 081102 (2012). doi:10.1103/PhysRevLett.109.081102

    ADS  Article  Google Scholar 

  37. 37.

    Barranco, J., Bernal, A., Degollado, J.C., Diez-Tejedor, A., Megevand, M., et al.: Schwarzschild scalar wigs: spectral analysis and late time behavior. Phys. Rev. D 89(8), 083006 (2014). doi:10.1103/PhysRevD.89.083006

    ADS  Article  Google Scholar 

  38. 38.

    Martin-Garcia, J.M., Gundlach, C.: Selfsimilar spherically symmetric solutions of the massless Einstein–Vlasov system. Phys. Rev. D 65, 084026 (2002). doi:10.1103/PhysRevD.65.084026

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    Akbarian, A., Choptuik, M.W.: Critical collapse in the spherically-symmetric Einstein–Vlasov model. Phys. Rev. D 90(10), 104023 (2014). doi:10.1103/PhysRevD.90.104023

    ADS  Article  Google Scholar 

Download references


This work was partially supported by DGAPA-UNAM Grant IN103514, by CONACYT Network Project 280908 “Agujeros Negros y Ondas Gravitatorias”, and by Conacyt Grant Fronteras 281.

Author information



Corresponding author

Correspondence to Paola Domínguez-Fernández.

Kinetic theory

Kinetic theory

Zero angular momentum

When the motion is purely radial and the angular momentum is zero, \(L_0=0\), the derivation of the particle density \(\rho _f\) in physical space, the momentum density \(j_f\), the mean value over momentum space, the average value of an arbitrary function g, and the total number of particles has to begin with a Dirac delta dependence of the distribution function in the angular momenta

$$\begin{aligned} f(t,r,p_r,p_\theta ,p_\varphi )= F(t,r,p_r) \; \delta (p_\theta ) \; \delta (p_\varphi /\sin \theta ) \end{aligned}$$

Transforming the Dirac deltas from coordinates (\(p_\theta \),\(p_\varphi \)) to the new coordinates (L,\(\psi \)) yields

$$\begin{aligned} \delta (p_\theta ) \; \delta (p_\varphi / \sin \theta ) = \frac{1}{L} \; \delta (L) \; \delta (\psi ). \end{aligned}$$

So that the expressions for the density, current, mean value and average in the case of zero angular momentum become

$$\begin{aligned} \rho _f(t,r)= & {} \frac{1}{r^2} \int F(t,r,p_r) \; dp_r , \end{aligned}$$
$$\begin{aligned} j_f(t,r)= & {} \frac{1}{r^2} \int p_r \; F(t,r,p_r) \; dp_r, \end{aligned}$$
$$\begin{aligned} \bar{g}(t,r)= & {} \frac{1}{r^2} \int g \; F(t,r,p_r) \; dp_r, \end{aligned}$$
$$\begin{aligned} \langle g\rangle (t)= & {} 4 \pi \int g \; F(t,r,p_r) \; dp_r \; dr, \end{aligned}$$
$$\begin{aligned} N= & {} 4 \pi \int F(t,r,p_r) \; dp_r \; dr. \end{aligned}$$

Continuity equation

We start from the Vlasov equation written as

$$\begin{aligned} \frac{\partial f}{\partial t} + \frac{p_r}{m}\frac{\partial f}{\partial r} - \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} \; \frac{\partial f}{\partial p_r} = 0, \end{aligned}$$

where \(\varPhi _{\mathrm{eff}}(r) \equiv \varPhi (r)+ L^2/2 m r^2\) is the effective potential. Integrating over momentum space we find

$$\begin{aligned} \int \frac{\partial f}{\partial t} \; d \bar{\omega } + \int \frac{p_r}{m} \; \frac{\partial f}{\partial r} \; d \bar{\omega } - \int \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} \; \frac{\partial f}{\partial p_r} \; d \bar{\omega } = 0, \end{aligned}$$

with \(d \bar{\omega }\) the volume element given in Eq. (2.7).

For now on we will assume that the distribution function is of compact support in phase space (or decays very rapidly). The first term of the above equation is easy to simplify:

$$\begin{aligned} \int \frac{\partial f}{\partial t} \; d \bar{\omega } = \frac{\partial }{\partial t} \int f \; d \bar{\omega } = \frac{\partial \rho _f}{\partial t}, \end{aligned}$$

where have used the definition of the particle density \(\rho _f\), Eq. (2.9). In a similar way we find for the second term:

$$\begin{aligned} \int \frac{p_r}{m} \; \frac{\partial f}{\partial r} \; d \bar{\omega }= & {} \frac{2 \pi }{m r^2} \; \int p_r \; \frac{\partial f}{\partial r} \; L \; dp_r dL \nonumber \\= & {} \frac{2 \pi }{m r^2} \; \frac{\partial }{\partial r} \int p_r f L \; dp_r dL \nonumber \\= & {} \frac{1}{m r^2} \; \frac{\partial }{\partial r} \left( r^2 j_f \right) , \end{aligned}$$

where we have now used the definition of the momentum density \(j_f\), Eq. (2.10). Finally, the last term can be easily shown to vanish for a distribution function of compact support:

$$\begin{aligned} \int \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} \; \frac{\partial f}{\partial p_r} \; d \bar{\omega }= & {} \frac{2 \pi }{r^2} \; \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} \int \frac{\partial f}{\partial p_r} \; L \; dp_r dL \nonumber \\= & {} \frac{2 \pi }{r^2} \; \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} \int \left( \int \frac{\partial f}{\partial p_r} \; d p_r \right) L \; dL \nonumber \\= & {} 0, \end{aligned}$$

where we assumed that f is zero for large values of \(|p_r|\). If we now define the mass density as \(\rho _m := m \rho _f\), the Vlasov equation integrated over momentum space reduces to

$$\begin{aligned} \frac{\partial \rho _m}{\partial t} + \frac{1}{r^2} \; \frac{\partial }{\partial r} \left( r^2 j_f \right) = 0, \end{aligned}$$

which is nothing more than the standard continuity equation in spherical symmetry. By integrating the continuity equation in physical space it can now be easily shown, by using the divergence theorem, that the number of particles N defined above in Eq. (2.12) is conserved in the sense that \(\partial N / \partial t = 0\).

Virial theorem

To obtain the virial theorem, the Vlasov equation in spherical symmetry is multiplied by \(r p_r\), and integrated over phase space:

$$\begin{aligned} \int r p_r \; \frac{\partial f}{\partial t} \; dV d\bar{\omega }+ & {} \frac{1}{m} \int r p_r^ 2 \; \frac{\partial f}{\partial r} \; dV d\bar{\omega } \nonumber \\- & {} \int r p_r \; \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} \; \frac{\partial f}{\partial p_r} \; dV d\bar{\omega } = 0. \end{aligned}$$

The first term above can be rewritten as:

$$\begin{aligned} \int r p_r \; \frac{\partial f}{\partial t} \; dV d\bar{\omega } = \frac{\partial }{\partial t} \int r p_r f \; dV d \bar{\omega } = \frac{\partial }{\partial t} \langle r p_r \rangle . \end{aligned}$$

For the second term in Eq. (A.14) we find:

$$\begin{aligned} \frac{1}{m} \int r p_r^ 2 \; \frac{\partial f}{\partial r} \; dV d\bar{\omega }= & {} \frac{8 \pi ^2}{m} \int p_r^2 \left( r \frac{\partial f}{\partial r} \right) L \; dr dL dp_r \nonumber \\= & {} - \frac{8 \pi ^2}{m} \int p_r^2 f L \; dr dL dp_r \nonumber \\= & {} - \frac{1}{m} \; \langle p_r^2 \rangle \nonumber \\= & {} - 2 \langle K_r \rangle , \end{aligned}$$

where in the second line above we integrated by parts over r, using the fact that f has compact support, and where \(K_r=p_r^2/2m\) is the radial kinetic energy.

For the third term of (A.14) we find:

$$\begin{aligned} \int r p_r \; \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} \; \frac{\partial f}{\partial p_r} \; dV d\bar{\omega }= & {} 8 \pi ^2 \int r \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} \left( p_r \; \frac{\partial f}{\partial p_r} \right) L \; dr dL dp_r \nonumber \\= & {} - 8 \pi ^2 \int r \frac{\partial \varPhi _{\mathrm{eff}}(r)}{\partial r} f L \; dr dL dp_r \nonumber \\= & {} \langle r F_{\mathrm{eff}}(r) \rangle , \end{aligned}$$

where again we have integrated by parts, but now over \(p_r\), and where we defined the effective force as \(F_{\mathrm{eff}}(r) = - \partial \varPhi _{{\mathrm{eff}}}(r) / \partial r\).

Collecting our results we find that the integrated Vlasov equation becomes

$$\begin{aligned} \frac{\partial }{\partial t} \langle r p_r \rangle = 2\langle K_r \rangle + \langle r F_{\mathrm{eff}}(r) \rangle . \end{aligned}$$

The last result is known as the virial theorem. In a steady state, the virial theorem implies

$$\begin{aligned} 2 \langle K_r \rangle + \langle r F_{\mathrm{eff}}(r) \rangle = 0. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Fernández, P., Jiménez-Vázquez, E., Alcubierre, M. et al. Description of the evolution of inhomogeneities on a dark matter halo with the Vlasov equation. Gen Relativ Gravit 49, 123 (2017).

Download citation


  • Cosmology
  • Dark matter
  • Numerical methods