Skip to main content
Log in

Gravitational mass and energy gradient in the ultra-strong magnetic fields

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The paper aims to apply the complex octonion to explore the influence of the energy gradient on the Eötvös experiment, impacting the gravitational mass in the ultra-strong magnetic fields. Until now the Eötvös experiment has never been validated under the ultra-strong magnetic field. It is aggravating the existing serious qualms about the Eötvös experiment. According to the electromagnetic and gravitational theory described with the complex octonions, the ultra-strong magnetic field must result in a tiny variation of the gravitational mass. The magnetic field with the gradient distribution will generate the energy gradient. These influencing factors will exert an influence on the state of equilibrium in the Eötvös experiment. That is, the gravitational mass will depart from the inertial mass to a certain extent, in the ultra-strong magnetic fields. Only under exceptional circumstances, especially in the case of the weak field strength, the gravitational mass may be equal to the inertial mass approximately. The paper appeals intensely to validate the Eötvös experiment in the ultra-strong electromagnetic strengths. It is predicted that the physical property of gravitational mass will be distinct from that of inertial mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, Z.-H.: Forces in the complex octonion curved space. Int. J. Geom. Methods Mod. Phys. 13, 1650076 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Damour, T.: Theoretical aspects of the equivalence principle. Class. Quant. Gravit. 29, 184001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Roll, P.G., Krotkov, R., Dicke, R.H.: The equivalence of inertial and passive gravitational mass. Ann. Phys. 26, 442 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Braginsky, V.B.: Experiments with probe masses. PNAS 104, 3677 (2007)

    Article  ADS  Google Scholar 

  5. Bondi, H.: Negative mass in general relativity. Rev. Mod. Phys. 29, 423 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Beall, E.F.: Measuring gravitational interaction of elementary particles. Phys. Rev. D 1, 961 (1970)

    Article  ADS  Google Scholar 

  7. Olson, D.W., Guarino, R.C.: Measuring the active gravitational mass of a moving object. Am. J. Phys. 53, 661 (1985)

    Article  ADS  Google Scholar 

  8. Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., Aronson, S.H.: Reanalysis of the Eötvös experiment. Phys. Rev. Lett. 56, 3 (1986)

    Article  ADS  Google Scholar 

  9. Niebauer, T.M., McHugh, M.P., Faller, J.E.: Galilean test for the fifth force. Phys. Rev. Lett. 59, 609 (1987)

    Article  ADS  Google Scholar 

  10. Stubbs, C.W., Adelberger, E.G., Heckel, B.R., Rogers, W.F., Swanson, H.E., Watanabe, R., Gundlach, J.H., Raab, F.J.: Limits on composition-dependent interactions using a laboratory source: Is there a “fifth force” coupled to isospin? Phys. Rev. Lett. 62, 609 (1989)

    Article  ADS  Google Scholar 

  11. Adelberger, E.G., Stubbs, C.W., Heckel, B.R., Su, Y., Swanson, H.E., Smith, G.L., Gundlach, J.H., Rogers, W.F.: Testing the equivalence principle in the field of the earth: Particle physics at masses below 1 \(\mu \) eV? Phys. Rev. D 42, 3267 (1990)

    Article  ADS  Google Scholar 

  12. Shapiro, I.I., Counselman III, C.C., King, R.W.: Verification of the principle of equivalence for massive bodies. Phys. Rev. Lett. 36, 555 (1976)

    Article  ADS  Google Scholar 

  13. Baessler, S., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U., Swanson, H.E.: Improved test of the equivalence principle for gravitational self-energy. Phys. Rev. Lett. 83, 3585 (1999)

    Article  ADS  Google Scholar 

  14. Turyshev, S.G., Israelsson, U.E., Shao, M., Yu, N., Kusenko, A., Wright, E.L., Everitt, C.W.F., Kasevich, M., Lipa, J.A., Mester, J.C., Reasenberg, R.D., Walsworth, R.L., Ashay, N., Gould, H., Paik, H.J.: Space-based research in fundamental physics and quantum technologies. Int. J. Mod. Phys. D 16, 1879 (2007)

    Article  ADS  Google Scholar 

  15. Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H., Adelberger, E.G.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008)

    Article  ADS  Google Scholar 

  16. Moffat, J.W., Gillies, G.T.: Satellite Eötvös test of the weak equivalence principle for zero-point vacuum energy. New J. Phys. 4, 92 (2002)

    Article  ADS  Google Scholar 

  17. Weng, Z.-H.: Dynamic of astrophysical jets in the complex octonion space. Int. J. Mod. Phys. D 24, 1550072 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Maxwell, J.C.: Treatise on Electricity and Magnetism. Dover Publishing Inc., New York (1954)

    MATH  Google Scholar 

  19. Weng, Z.-H.: Field equations in the complex quaternion spaces. Adv. Math. Phys. 2014, 450262 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weng, Z.-H.: Angular momentum and torque described with the complex octonion, AIP Adv., 4, 087103 (2014) [Erratum: ibid. 5, 109901 (2015)]

  21. Morita, K.: Quaternions, Lorentz group and the Dirac theory. Prog. Theor. Phys. 117, 501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Anastassiu, H.T., Atlamazoglou, P.E., Kaklamani, D.I.: Application of bicomplex (quaternion) algebra to fundamental electromagnetics: a lower order alternative to the Helmholtz equation. IEEE Trans. Antennas Propag. 51, 2130 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Doria, F.A.: A Weyl-like equation for the gravitational field. Lett. Nuovo Cimento 14, 480 (1975)

    Article  MathSciNet  Google Scholar 

  24. Majernik, V.: Quaternionic formulation of the classical fields. Adv. Appl. Clifford Algebras 9, 119 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Edmonds, J.D.: Quaternion wave equations in curved space-time. Int. J. Theor. Phys. 10, 115 (1974)

    Article  MathSciNet  Google Scholar 

  26. Rawat, A.S., Negi, O.P.S.: Quaternion gravi-electromagnetism. Int. J. Theor. Phys. 51, 738 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mironov, V.L., Mironov, S.V.: Octonic representation of electromagnetic field equations. J. Math. Phys. 50, 012901 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Demir, S., Tanisli, M., Tolan, T.: Octonic gravitational field equations. Int. J. Mod. Phys. A 28, 1350112 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gogberashvili, M.: Octonionic electrodynamics. J. Phys. A 39, 7099 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Generalized octonion electrodynamics. Int. J. Theor. Phys. 49, 1333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Furui, S.: Axial anomaly and the triality symmetry of octonion. Few-Body Syst. 54, 2097 (2013)

    Article  ADS  Google Scholar 

  32. Weng, Z.-H.: Physical quantities and spatial parameters in the complex octonion curved space. Gen. Relativ. Gravit. 48, 153 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Weng, Z.-H.: Gradient force of electromagnetic strength to drive precisely the small mass. Key Eng. Mater. 656–657, 670 (2015)

    Article  Google Scholar 

  34. Narevicius, E., Libson, A., Parthey, C.G., Chavez, I., Narevicius, J., Even, U., Raizen, M.G.: Stopping supersonic beams with a series of pulsed electromagnetic coils: a molecular coilgun. Phys. Rev. Lett. 100, 093003 (2008)

    Article  ADS  Google Scholar 

  35. Osterwalder, A., Meek, S.A., Hammer, G., Haak, H., Meijer, G.: Deceleration of neutral molecules in macroscopic traveling traps. Phys. Rev. A 81, 051401 (2010)

    Article  ADS  Google Scholar 

  36. White, H., March, P., Lawrence, J., Vera, J., Sylvester, A., Brady, D., Bailey, P.: Measurement of impulsive thrust from a closed radio-frequency cavity in vacuum. J. Propul. Power (2017). doi:10.2514/1.B36120

    Google Scholar 

Download references

Acknowledgements

The author is indebted to the anonymous referees for their valuable comments on the previous manuscripts. This Project was supported partially by the National Natural Science Foundation of China under Grant Number 60677039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Hua Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, ZH. Gravitational mass and energy gradient in the ultra-strong magnetic fields. Gen Relativ Gravit 49, 97 (2017). https://doi.org/10.1007/s10714-017-2260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2260-5

Keywords

Mathematics Subject Classification

Navigation