Skip to main content

Dynamical system approach to scalar–vector–tensor cosmology


Using scalar–vector–tensor Brans Dicke (VBD) gravity (Ghaffarnejad in Gen Relativ Gravit 40:2229, 2008; Gen Relativ Gravit 41:2941, 2009) in presence of self interaction BD potential \(V(\phi )\) and perfect fluid matter field action we solve corresponding field equations via dynamical system approach for flat Friedmann Robertson Walker metric (FRW). We obtained three type critical points for \(\Lambda CDM\) vacuum de Sitter era where stability of our solutions are depended to choose particular values of BD parameter \(\omega \). One of these fixed points is supported by a constant potential which is stable for \(\omega <0\) and behaves as saddle (quasi stable) for \(\omega \ge 0\). Two other ones are supported by a linear potential \(V(\phi )\sim \phi \) which one of them is stable for \(\omega =0.27647\). For a fixed value of \(\omega \) there is at least 2 out of 3 critical points reaching to a unique critical point. Namely for \(\omega =-0.16856(-0.56038)\) the second (third) critical point become unique with the first critical point. In dust and radiation eras we obtained one critical point which never become unique fixed point. In the latter case coordinates of fixed points are also depended to \(\omega \). To determine stability of our solutions we calculate eigenvalues of Jacobi matrix of 4D phase space dynamical field equations for de Sitter, dust and radiation eras. We should point also potentials which support dust and radiation eras must be similar to \(V(\phi )\sim \phi ^{-\frac{1}{2}}\) and \(V(\phi )\sim \phi ^{-1}\) respectively. In short our study predicts that radiation and dust eras of our VBD–FRW cosmology transmit to stable de Sitter state via non-constant potential (effective variable cosmological parameter) by choosing \(\omega =0.27647\).

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Ivancevic, V.G., Ivancevic, T.T.: Complex Nonlinearity, Chaos, PhaseTransition, Topology Change and Path Integrals. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Thompson, J.M.T., Stewart, H.B.: Nonliniear Dynamics and Chaos, 2nd edn. Wiley, Hoboken (2002)

    Google Scholar 

  3. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  4. Zhou, S.Y., Copeland, E.J., Saffin, P.M.: JCAP 0907, 009 (2009). arXiv:0903.4610 [gr-qc] (2010)

  5. Azizi, T., Yaraie, E.: Int. J. Mod. Phys. D 23(2), 145002 (2014)

    Article  Google Scholar 

  6. Hrycyna, O., Szydtowski, M.: JCAP 2013(12), 016 (2013)

    Article  Google Scholar 

  7. Hrycyna, O., Szydlowski, M.: Phys. Rev. D 88(6), 064018 (2013). arXiv:1304.3300 [gr-qc]

  8. Hrycyna, O., Kamionka, M., Szydlowski, M.: Phys. Rev. D 90(12), 124040 (2014). arXiv:1404.7112 [astro-ph]

  9. Copeland, E.J., Mizuno, S., Shaeri, M.: Phys. Rev. D 79, 103515 (2009). arXiv:0904.0877 [astro-ph]

  10. Matos, T., Luevano, J.R., Quiros, I., Urena-Lopez, L.A., Vazquez, J.A.: Phys. Rev. D 80, 123521 (2009). arXiv:0906.0396 [astro-ph]

  11. Urena-Lopez, L.A., Reyes-Ibarra, M.J.: Int. J. Mod. Phys. D 18, 621–634 (2009). arXiv:0709.3996 [astro-ph]

  12. Amendola, L.: Phys. Rev. D 62, 043511 (2000). arXiv:astro-ph/9908023

    Article  ADS  Google Scholar 

  13. Fay, S., Nesseris, S., Perivolaropoulos, L.: Phys. Rev. D 76, 063504 (2007). arXiv:gr-qc/0703006

    Article  ADS  Google Scholar 

  14. Nozari, K., Kiani, F.: Int. J. Geo. Meth. Mod. Phys. 8(6), 1179 (2011)

    Article  Google Scholar 

  15. Bertone, G., Hooper, D., Silk, J.: Phys. Rept. 405, 279 (2005). arXiv:hep-th/0404175

    Article  ADS  Google Scholar 

  16. Frieman, J.A., Turner, M.S., Huterer, D.: Annu. Rev. Astron. Astrophys. 46, 385 (2008)

    Article  ADS  Google Scholar 

  17. Moffat, J.M.: J. Cosmol. Astropart. Phys. 03, 004 (2006). arXiv:gr-qc/0506021v7

    Article  ADS  Google Scholar 

  18. Bekensten, J.D.: Philos. Trans. R. Soc. A 369, 5003 (2011). arXiv:1201.2759 [astro-ph] (2012)

  19. Deng, X.M., Xie, Y., Huang, T.Y.: Phys. Rev. D 79, 044014 (2009). arXiv:0901.3730 [gr-qc]

  20. Ghaffarnejad, H.: Gen. Relativ. Gravit. 40, 2229 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ghaffarnejad, H.: Gen. Relativ. Gravit. 41(E), 2941 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Brans, C., Dicke, R.: Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ghaffarnejad, H.: Class. Quantum Gravity 27, 015008 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ghaffarnejad, H.: J. Phys. Conf. Ser. 633, 012020 (2015)

    Article  Google Scholar 

  25. Salcedo, R.G., Gonzales, T., Quiros, I.: Phys. Rev. D 92, 124056 (2015). arXiv:1504.08315 [gr-qc]

  26. Will C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press (1993) revised version: arXiv: gr-qc/9811036

  27. Gaztanaga, E., Lobo, J.A.: Astrophys. J. 548, 47 (2001)

    Article  ADS  Google Scholar 

  28. Reasenberg, R.D., et al.: Astrophys. J. 234, 925 (1961)

    Google Scholar 

  29. Will, C.M.: Living Rev. Rel. 9 (2006).

  30. Bertotti, B., Iess, L., Trotora, P.: Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  31. Uzan, J.P.: arXiv:astro-ph/0409424

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Ghaffarnejad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaffarnejad, H., Yaraie, E. Dynamical system approach to scalar–vector–tensor cosmology. Gen Relativ Gravit 49, 49 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Friedmann Robertson Walker cosmology
  • Preferred reference frame effects
  • Brans–Dicke gravity
  • Dynamical system approach
  • Critical points
  • \(\Lambda \)CDM era