Abstract
Scalar-Tensor-Vector Gravity (STVG), also referred as Modified Gravity (MOG), is an alternative theory of the gravitational interaction. Its weak field approximation has been successfully used to describe Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmological data, without the imposition of dark components. The theory was formulated by John Moffat in 2006. In this work, we derive matter-sourced solutions of STVG and construct neutron star models. We aim at exploring STVG predictions about stellar structure in the strong gravity regime. Specifically, we represent spacetime with a static, spherically symmetric manifold, and model the stellar matter content with a perfect fluid energy-momentum tensor. We then derive the modified Tolman–Oppenheimer–Volkoff equation in STVG and integrate it for different equations of state. We find that STVG allows heavier neutron stars than General Relativity (GR). Maximum masses depend on a normalized parameter that quantifies the deviation from GR. The theory exhibits unusual predictions for extreme values of this parameter. We conclude that STVG admits suitable spherically symmetric solutions with matter sources, relevant for stellar structure. Since recent determinations of neutron stars masses violate some GR predictions, STVG appears as a viable candidate for a new gravity theory.
Similar content being viewed by others
Notes
Compared to Moffat’s original action at Ref. [11], we nullify the cosmological constant because its effects are negligible over stellar structure, we ignore the scalar field nature of \(\omega \) and set \(\omega =1/\sqrt{12}\), as suggested by Moffat [20, 21], and we set the potential \(W(\phi )=0\) as is usually stated (see Ref. [11]). Also, we propose a slight modification: we change the sign of vector field action \(S_{\phi }\) in order to find agreement with the analogous Einstein–Maxwell formalism.
References
Bunge, M.A.: Treatise on Basic Philosophy: Ontology I: The Furniture of the World. Springer, Berlin (1977)
Aprile, E., Alfonsi, M., Arisaka, K., et al.: Dark matter results from 225 live days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012)
LUX Collaboration: First results from the LUX dark matter experiment at the Sanford Underground Research Facility. ArXiv e-prints: 1310.8214 (2013)
Agnese, R., Anderson, A.J., Asai, M., et al.: Search for low-mass weakly interacting massive particles with superCDMS. Phys. Rev. Lett. 112, 241302 (2014)
Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983)
Bekenstein, J., Milgrom, M.: Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 286, 7–14 (1984)
Sanders, R.H.: Phase coupling gravity and astronomical mass discrepancies. Mon. Not. R. Astron. Soc. 235, 105–121 (1988)
Sanders, R.H.: A stratified framework for scalar–tensor theories of modified dynamics. Astrophys. J. 480, 492–502 (1997)
Bekenstein, J.D.: Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 70, 083509 (2004)
Famaey, B., McGaugh, S.S.: Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living Rev. Relativ. 15, 10 (2012)
Moffat, J.W.: Scalar tensor vector gravity theory. J. Cosmol. Astropart. Phys. 3, 4 (2006)
Brownstein, J.R., Moffat, J.W.: Galaxy rotation curves without nonbaryonic dark matter. Astrophys. J. 636, 721–741 (2006)
Moffat, J.W., Rahvar, S.: The MOG weak field approximation-II. Observational test of Chandra X-ray clusters. Mon. Not. R. Astron. Soc. 441, 3724–3732 (2014)
Brownstein, J.R., Moffat, J.W.: The bullet cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter. Mon. Not. R. Astron. Soc. 382, 29–47 (2007)
Moffat, J.W., Toth, V.T.: Modified gravity: cosmology without dark matter or Einstein’s cosmological constant.ArXiv e-prints: 0710.0364 (2007)
Lasky, P.D.: Black holes and neutron stars in the generalized tensor-vector-scalar theory. Phys. Rev. D 80, 081501 (2009)
Lasky, P.D., Doneva, D.D.: Stability and quasinormal modes of black holes in tensor–vector–scalar theory scalar field perturbations. Phys. Rev. D 82, 124068 (2010)
Mavromatos, N.E., Sakellariadou, M., Yusaf, M.F.: Can the relativistic field theory version of modified Newtonian dynamics avoid dark matter on galactic scales? Phys. Rev. D 79, 081301 (2009)
Seifert, M.D.: Stability of spherically symmetric solutions in modified theories of gravity. Phys. Rev. D 76, 064002 (2007)
Moffat, J.W., Rahvar, S.: The MOG weak field approximation and observational test of galaxy rotation curves. Mon. Not. R. Astron. Soc 436, 1439–1451 (2013)
Moffat, J.W., Toth, V.T.: Fundamental parameter-free solutions in modified gravity. Class. Quantum Gravity 26, 085002 (2009)
Moffat, J.W.: Black holes in modified gravity (MOG). Eur. Phys. J. C 75, 175 (2015)
Florides, P.S.: The complete field of charged perfect fluid spheres and of other static spherically symmetric charged distributions. J. Phys. A Math. Gen. 16, 1419 (1983)
Maurya, S.K., Gupta, Y.K., Ray, S., Chowdhury, S.R.: Spherically symmetric electromagnetic mass models of embedding class one. ArXiv e-prints: 1506.02498 (2015)
Silbar, R.R., Reddy, S.: Neutron stars for undergraduates. Am. J. Phys. 72, 892–905 (2004)
Douchin, F., Haensel, P.: A unified equation of state of dense matter and neutron star structure. Astron. Astrophys. 380, 151–167 (2001)
Pandharipande, V.R., Ravenhall, D.G.: Hot nuclear matter. In: Soyeur, M., Flocard, H., Tamain, B., Porneuf, M. (eds.) NATO Advanced Science Institutes ASI Series B, vol. 205, p. 103. Springer, US (1989)
Goriely, S., Chamel, N., Pearson, J.M.: Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter. Phys. Rev. C 82, 035804 (2010)
Pearson, J.M., Goriely, S., Chamel, N.: Properties of the outer crust of neutron stars from Hartree–Fock–Bogoliubov mass models. Phys. Rev. C 83, 065810 (2011)
Pearson, J.M., Chamel, N., Goriely, S., Ducoin, C.: Inner crust of neutron stars with mass-fitted Skyrme functionals. Phys. Rev. C 85, 065803 (2012)
Haensel, P., Potekhin, A.Y.: Analytical representations of unified equations of state of neutron-star matter. Astron. Astrophys. 428, 191–197 (2004)
Potekhin, A.Y., Fantina, A.F., Chamel, N., et al.: Analytical representations of unified equations of state for neutron-star matter. Astron. Astrophys. 560, A48 (2013)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in FORTRAN 77, vol. 1. Cambridge University Press, Cambridge (1992)
Orellana, M., García, F., Teppa Pannia, F.A., Romero, G.E.: Structure of neutron stars in R-squared gravity. Gen. Relativ. Gravit. 45, 771–783 (2013)
Antoniadis, J., Freire, P.C.C., Wex, N., et al.: A massive pulsar in a compact relativistic binary. Science 340, 448 (2013)
Kiziltan, B., Kottas, A., De Yoreo, M., Thorsett, S.E.: The neutron star mass distribution. Astrophys. J. 778, 66 (2013)
Özel, F., Psaltis, D., Narayan, R., Santos Villarreal, A.: On the mass distribution and birth masses of neutron stars. Astrophys. J. 757, 55 (2012)
Demorest, P.B., Pennucci, T., Ransom, S.M., et al.: A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010)
Yazadjiev, S.S., Doneva, D.D., Kokkotas, K.D., Staykov, K.V.: Non-perturbative and self-consistent models of neutron stars in R-squared gravity. J. Cosmol. Astropart. Phys. 6, 3 (2014)
Lasky, P.D., Sotani, H., Giannios, D.: Structure of neutron stars in tensor–vector–scalar theory. Phys. Rev. D 78, 104019 (2008)
Sotani, H.: Slowly rotating relativistic stars in tensor–vector–scalar theory. Phys. Rev. D 81, 084006 (2010)
Yazadjiev, S.S., Doneva, D.D., Kokkotas, K.D.: Rapidly rotating neutron stars in R-squared gravity. Phys. Rev. D 91, 084018 (2015)
Staykov, K.V., Doneva, D.D., Yazadjiev, S.S., Kokkotas, K.D.: Slowly rotating neutron and strange stars in \(\text{ R }^{2}\) gravity. J. Cosmol. Astropart. Phys. 10, 6 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by Grants PICT 2012-00878 (Agencia Nacional de Promoción Científica y Tecnológica, Argentina) and AYA 2013-47447-C3-1-P (Ministro de Educación, Cultura y Deporte, España). We would like to thank Federico García and Santiago del Palacio for helpful comments.
Rights and permissions
About this article
Cite this article
Lopez Armengol, F.G., Romero, G.E. Neutron stars in Scalar-Tensor-Vector Gravity. Gen Relativ Gravit 49, 27 (2017). https://doi.org/10.1007/s10714-017-2184-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10714-017-2184-0