Skip to main content
Log in

Newman–Janis Ansatz in conformastatic spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Newman–Janis Ansatz was used first to obtain the stationary Kerr metric from the static Schwarzschild metric. Many works have been devoted to investigate the physical significance of this Ansatz, but no definite answer has been given so far. We show that this Ansatz can be applied in general to conformastatic vacuum metrics, and leads to stationary generalizations which, however, do not preserve the conformal symmetry. We investigate also the particular case when the seed solution is given by the Schwarzschild spacetime and show that the resulting rotating configuration does not correspond to a vacuum solution, even in the limiting case of slow rotation. In fact, it describes in general a relativistic fluid with anisotropic pressure and heat flux. This implies that the Newman–Janis Ansatz strongly depends on the choice of representation for the seed solution. We interpret this result as a further indication of its applicability limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr, R.P.: Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Newman, E.T., Janis, A.I.: J. Math. Phys. 6, 915–917 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  3. Newman, E.T., et al.: J. Math. Phys. 6, 918 (1965)

    Article  ADS  Google Scholar 

  4. Demianski, M., Newman, E.T.: Bull Acad. Polon. Sci. Set. Math. Astron. Phys. 14, 653 (1966)

    Google Scholar 

  5. Talbot, C.G.: Commun. Math. Phys. 13, 45 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  6. Demianski, M.: Phys. Lett. A 42, 157 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  7. Schiffer, M., Adler, R., Mark, J., Sheffield, C.: J. Math. Phys. 14, 52–56 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  8. Finkelstein, R.J.: J. Math. Phys. 16, 1271–1277 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  9. Quevedo, H.: Gen. Relativ. Gravit. 24, 693 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. Quevedo, H.: Gen. Relativ. Gravit. 24, 799 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Herrera, L., Jiménez, J.: J. Math. Phys. 23, 2339 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. Drake, S., Turolla, R.: Class. Quantum Gravity 14, 1883 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ibohal, N.: Gen. Relativ. Gravit. 37, 19 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Papakostas, T., Phys, J.: Conf. Ser. 8, 22 (2005)

    Article  Google Scholar 

  15. Papakostas, T., Phys, J.: Conf. Ser. 189, 012027 (2009)

    Article  ADS  Google Scholar 

  16. Viaggiu, S.: Int. J. Modern Phys. D 15, 1441 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Viaggiu, S.: Int. J. Modern Phys. D 19, 1783 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Rosquist, K.: Class. Quantum Gravity 16, 1755 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lozanovski, C., Wylleman, L.: Class. Quantum Gravity 28, 075015 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ferraro, R.: Gen. Relativ. Gravit. 46, 1705 (2014)

    Article  ADS  Google Scholar 

  21. Hansen, D., Yunes, N.: Phys. Rev. D 88, 104020 (2013)

    Article  ADS  Google Scholar 

  22. Lessner, G.: Gen. Relativ. Gravit. 40, 2177 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Modesto, L., Nicolini, P.: Phys. Rev. D 82, 104035 (2010)

    Article  ADS  Google Scholar 

  24. Miao, Y., Xue, Z., Zhang, S.: Int. J. Mod. Phys. D 21, 1250017 (2012)

    Article  Google Scholar 

  25. Caravelli, F., Modesto, L.: Class. Quantum Gravity 27, 245022 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. Azrag-Ainou, M.: Eur. Phys. J. C 74, 2865 (2014)

    Article  ADS  Google Scholar 

  27. Azrag-Ainou, M.: Phys. Rev. D 90, 064041 (2014)

    Article  ADS  Google Scholar 

  28. Larranaga, A., Cardenas-Avendano, A., Torres, D.: Phys. Lett. B 743, 492 (2015)

    Article  ADS  Google Scholar 

  29. Erbin, H.: Gen. Relativ. Gravit. 47, 19 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Synge, J.: Relativity: The General Theory. North-Holland Pub. Co. Interscience Publishers, Amsterdam (1960)

    MATH  Google Scholar 

  31. Gutiérrez-Piñeres, A.C., González, G.A., Quevedo, H.: Phys. Rev. D 87, 044010 (2013)

    Article  ADS  Google Scholar 

  32. Gutiérrez-Piñeres, A.C., Lopez-Monsalvo, C.S., Quevedo, H.: Gen. Relativ. Gravit. 47, 1 (2015)

    Article  Google Scholar 

  33. Gutiérrez-Piñeres, A.C.: Gen. Relativ. Gravit. 47, 54 (2015)

    Article  ADS  Google Scholar 

  34. Gutiérrez-Piñeres, A.C., Capistrano, A.J.: Adv. Math. Phys. 15, 2015 (2015)

    Google Scholar 

  35. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by DGAPA-UNAM, Grant No. 113514, and Conacyt, Grant No. 166391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Quevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Piñeres, A.C., Quevedo, H. Newman–Janis Ansatz in conformastatic spacetimes. Gen Relativ Gravit 48, 146 (2016). https://doi.org/10.1007/s10714-016-2144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2144-0

Keywords

Navigation