Skip to main content


Log in

Rapidly rotating spacetimes and collisional super-Penrose process

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript


We consider generic axially symmetric rotating spacetimes and examine particle collisions in the ergoregion. The results are generic and agree with those obtained in the particular case of the rotating Teo wormhole in Tsukamoto and Bambi, Phys Rev D 91:104040, 2015. It is shown that for sufficiently rapid rotation, the energy of a particle escaping to infinity can become arbitrary large (so-called super-Penrose process). Moreover, this energy is typically much larger than the center-of mass energy of colliding particles. In this sense the situation differs radically from that for collisions near black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Bañados, M., Silk, J., West, S.M.: Phys. Rev. Lett. 103, 111102 (2009). [arXiv:0909.0169]

    Article  ADS  Google Scholar 

  2. Piran, T., Katz, J., Shaham, J.: Astrophys. J. 196, L107 (1975)

    Article  ADS  Google Scholar 

  3. Piran, T., Shaham, J.: Astrophys. J. 214, 268 (1977)

    Article  ADS  Google Scholar 

  4. Piran, T., Shanam, J.: Phys. Rev. D 16, 1615 (1977)

    Article  ADS  Google Scholar 

  5. Grib, A.A., Pavlov, Y.V.: Europhys. Lett. 101, 20004 (2013). [arXiv:1301.0698]

    Article  ADS  Google Scholar 

  6. Zaslavskii, O.B.: Mod. Phys. Lett. A 28, 1350037 (2013). [arXiv:1301.4699]

    Article  ADS  Google Scholar 

  7. Tsukamoto, N., Bambi, C.: Phys. Rev. D 91, 084013 (2015). [arXiv:1411.5778]

    Article  ADS  MathSciNet  Google Scholar 

  8. Teo, E.: Phys. Rev. D 58, 024014 (1998). [arXiv:gr-qc/9803098]

    Article  ADS  MathSciNet  Google Scholar 

  9. Zaslavskii, O.B.: Mod. Phys. Lett. A 31, 1650029 (2016). [arXiv:1506.02638]

  10. Berti, E., Brito, R., Cardoso, V.: Phys. Rev. Lett. 114, 251103 (2015). [arXiv:1410.8534]

    Article  ADS  Google Scholar 

  11. Zaslavskii, O.: Pis’ma ZhETF 92, 635 (2010) (JETP Lett. 92, 571 (2010)). [arXiv:1007.4598]

  12. Parthasarathy, S., Wagh, S.M., Dhurandhar, S.V., Dadhich, N.: Astrophys. J. 307, 38 (1986)

    Article  ADS  Google Scholar 

  13. Bejger, M., Piran, T., Abramowicz, M., Håkanson, F.: Phys. Rev. Lett. 109, 121101 (2012). [arXiv:1205.4350]

    Article  ADS  Google Scholar 

  14. Harada, T., Nemoto, H., Miyamoto, U.: Phys. Rev. D 86 (2012). 024027 [Erratum ibid. D 86 (2012) 069902] [arXiv:1205.7088]

  15. Zaslavskii, O.: Phys. Rev. D 86, 084030 (2012). [arXiv:1205.4410]

    Article  ADS  MathSciNet  Google Scholar 

  16. Schnittman, J.D.: Phys. Rev. Lett. 113, 261102 (2014). [arXiv:1410.6446]

    Article  ADS  Google Scholar 

  17. Leiderschneider, E., Piran, T.: Phys. Rev. D 93, 043015 (2016). [arXiv:1510.06764]

  18. Zaslavskii, O.: Mod. Phys. Lett. A 30, 1550076 (2015). [arXiv:1411.0267]

    Article  ADS  MathSciNet  Google Scholar 

  19. Leiderschneider, E., Piran, T.: [arXiv:1501.01984]

  20. Zaslavskii, O.B.: Europhys. Lett. 111, 50004 (2015). [arXiv:1506.06527]

    Article  ADS  Google Scholar 

  21. Patil, M., Harada, T.: [arXiv:1510.08205]

  22. Zaslavskii, O. B.: [arXiv:1510.02140]

  23. Tsukamoto, N., Bambi, C.: Phys. Rev. D 91, 104040 (2015). [arXiv:1503.06386]

    Article  ADS  MathSciNet  Google Scholar 

  24. Zaslavskii, O.B.: Phys. Rev. D 84, 024007 (2011). [arXiv:1104.4802]

    Article  ADS  Google Scholar 

  25. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Astrophys. J. 178, 347 (1972)

    Article  ADS  Google Scholar 

  26. Kleihaus, B., Kunz, J.: Phys. Rev. D 90, 121503(R) (2014). [arXiv:1409.1503]

    Article  ADS  Google Scholar 

  27. Smarr, L.: Phys. Rev. Lett. 30, 71 (1973)

    Article  ADS  Google Scholar 

  28. Zaslavskii, O.B.: Phys. Rev. D 92, 044017 (2015). [arXiv:1506.00148]

    Article  ADS  MathSciNet  Google Scholar 

  29. Kashargin, P.E., Sushkov, S.V.: Grav. Cosmol. 14, 80 (2008). [arXiv:0710.5656]

    Article  ADS  Google Scholar 

  30. Kashargin, P.E., Sushkov, S.V.: Phys. Rev. D 78, 064071 (2008). [arXiv:0809.1923]

    Article  ADS  Google Scholar 

  31. Bronnikov, K.A., Krechet, V.G., Lemos, J.P.S.: Phys. Rev. D 87, 084060 (2013). [arXiv:1303.2993]

    Article  ADS  Google Scholar 

  32. Ogasawara, K., Harada, T., Miyamoto, U.: [arXiv:1511.0011]

  33. Zaslavskii, O.B.: Phys. Rev. D 93, 024056 (2016). [arXiv:1511.07501]

    Article  ADS  Google Scholar 

Download references


This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities.

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. B. Zaslavskii.



Here, we prove inequality (35). As \(L_{1}\le 0\), \(K\ge K_{+}\) where \( K_{+}\) corresponds to the maximum possible value of \(E_{3}=E_{+}+s\). Therefore, it is sufficient to show that \(K_{+}>0\). Using (15), (33), (39) one finds

$$\begin{aligned} K_{+}=a_{0}+a_{1}L_{1}+a_{2}L_{2}^{2}\text {,} \end{aligned}$$


$$\begin{aligned} a_{0}= & {} \omega E_{1}^{2}>0\text {,} \end{aligned}$$
$$\begin{aligned} a_{1}= & {} \frac{N^{2}E_{1}}{g_{\phi }}\left( 1+\frac{\omega \sqrt{g_{\phi }B}}{N} \right) -2E_{1}\omega ^{2}\text {.} \end{aligned}$$
$$\begin{aligned} a_{2}= & {} \frac{g_{00}}{g_{\phi }}\left( \omega -\frac{N\sqrt{B}}{\sqrt{g_{\phi }}}\right) . \end{aligned}$$

By assumpion, the point of collision is located inside the ergoregion, where (29) is satisfied, hence

$$\begin{aligned} \omega \sqrt{g_{\phi }}>N\text {.} \end{aligned}$$

It is seen from (57) that \(B<1\). Then,

$$\begin{aligned} a_{2}>\frac{g_{00}}{g_{\phi }}\left( \omega -\frac{N}{\sqrt{g_{\phi }}}\right) >0. \end{aligned}$$

The coefficent \(a_{1}\) can be rewritten as

$$\begin{aligned} a_{1}=E_{1}c\text {,} \end{aligned}$$


$$\begin{aligned} c=\frac{N^{2}}{g_{\phi }}-2\omega ^{2}+\frac{N}{g_{\phi }}\omega \sqrt{ g_{\phi }B}. \end{aligned}$$

Using the inequality \(B<1\) again,

$$\begin{aligned} c\le \frac{N^{2}}{g_{\phi }}-2\omega ^{2}+\frac{N}{\sqrt{g_{\phi }}}\omega . \end{aligned}$$

It follows from (85) that

$$\begin{aligned} c\le \frac{N^{2}}{g_{\phi }}-\omega ^{2}=-\frac{g_{00}}{g_{\phi }}<0. \end{aligned}$$

Thus, since \(L_{1}\le 0\), all terms in (81) are positive or, at least, non-negative. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaslavskii, O.B. Rapidly rotating spacetimes and collisional super-Penrose process. Gen Relativ Gravit 48, 67 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: