Skip to main content
Log in

Einstein–Cartan, Bianchi I and the Hubble diagram

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We try to solve the dark matter problem in the fit between theory and the Hubble diagram of supernovae by allowing for torsion via Einstein–Cartan’s gravity and for anisotropy via the axial Bianchi I metric. Otherwise we are conservative and admit only the cosmological constant and dust. The failure of our model is quantified by the relative amount of dust in our best fit: \(\Omega _{m0}= 27 \pm \ 5 \,\%\) at 1\(\sigma \) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saunders, P.T.: Observations in some simple cosmological models with shear. Mon. Not. R. Astron. Soc. 142, 213 (1969)

    Article  ADS  Google Scholar 

  2. Cea, P.: The ellipsoidal universe in the Planck satellite era. Mon. Not. Roy. Astron. Soc. 441, 1646 (2014). [arXiv:1401.5627 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  3. Schücker, T., Tilquin, A., Valent, G.: Bianchi I meets the Hubble diagram. Mon. Not. Roy. Astron. Soc. 444, 2820 (2014). [arXiv:1405.6523 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  4. Cartan, É.: Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie). Ann. Éc. Norm. Sup. 40, 325 (1923)

    MathSciNet  MATH  Google Scholar 

  5. Cartan, É.: Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie), (première partie, suite). Ann. Éc. Norm. Sup. 41, 1 (1924)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Cartan, É.: Sur les variétés à connexion affine et la théorie de la rélativité généralisée (première partie), (deuxième partie). Ann. Éc. Norm. Sup. 42, 17 (1925)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393 (1978)

    Article  ADS  Google Scholar 

  8. Capozziello, S., Lambiase, G., Stornaiolo, C.: Geometric classification of the torsion tensor in space-time. Ann. Phys. 10, 713 (2001). [arXiv:gr-qc/0101038]

  9. Shapiro, I.L.: Physical aspects of the space-time torsion. Phys. Rep. 357, 113 (2002). [arXiv:hep-th/0103093]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Tilquin, A., Schücker, T.: Torsion, an alternative to dark matter? Gen. Rel. Grav. 43, 2965 (2011). [arXiv:1104.0160 [astro-ph.CO]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Schücker, T., ZouZou, S.R.: On a weak Gauss law in general relativity and torsion. Class. Quantum Grav. 29, 245009 (2012). [arXiv:1203.5642 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Schücker, T., Tilquin, A.: From Hubble diagrams to scale factors. Astron. Astrophys. 447, 413 (2006). [arXiv:astro-ph/0506457]

    Article  ADS  MATH  Google Scholar 

  13. Amanullah, R., Lidman, C., Rubin, D., Aldering, G., Astier, P., Barbary, K., Burns, M.S., Conley, A., et al.: Spectra and light curves of six type ia supernovae at \(0.511 <~\mathit{z}~< 1.12\) and the Union2 compilation. Astrophys. J. 716, 712 (2010). [arXiv:1004.1711 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  14. Betoule, M., et al. [SDSS Collaboration]: Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 568, A22 (2014). [arXiv:1401.4064 [astro-ph.CO]]

  15. SIMBAD astronomical database. http://simbad.u-strasbg.fr/simbad/

  16. The ROOT analysis package. http://root.cern.ch/drupal/

  17. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308 (1965)

    Article  MATH  Google Scholar 

  18. Rosenblatt, F.: A probabilistic model for information storage and organization in the brain. Cornell Aeronaut. Lab. Psychol. Rev. 65(6), 386 (1958)

    MathSciNet  Google Scholar 

  19. TMultiLayerPerceptron: Designing and using multi-layer perceptrons with ROOT. http://cp3.irmp.ucl.ac.be/delaere/MLP/

Download references

Acknowledgments

This work has been carried out thanks to the support of the OCEVU Labex (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French government program managed by the ANR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schücker.

Additional information

A. Tilquin and T. Schücker: supported by the OCEVU Labex (ANR-11-LABX-0060) funded by the “Investissements d’Avenir” French government program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZouZou, S.R., Tilquin, A. & Schücker, T. Einstein–Cartan, Bianchi I and the Hubble diagram. Gen Relativ Gravit 48, 48 (2016). https://doi.org/10.1007/s10714-016-2050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2050-5

Keywords

Navigation