Skip to main content
Log in

Unruh versus Tolman: on the heat of acceleration

Dedicated to the memory of Rudolf Haag

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is shown that the Unruh effect, i.e. the increase in temperature indicated by a uniformly accelerated thermometer in an inertial vacuum state of a quantum field, cannot be interpreted as the result of an exchange of heat with a surrounding gas. Since the vacuum is spatially homogeneous in the accelerated system its temperature must be zero everywhere as a consequence of Tolman’s law. In fact, the increase of temperature of accelerated thermometers is due to systematic quantum effects induced by the local coupling between the thermometer and the vacuum. This coupling inevitably creates excitations of the vacuum which transfer energy to the thermometer, gained by the acceleration, and thereby affect its readings. The temperature of the vacuum, however, remains to be zero for arbitrary accelerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  2. Bisognano, J.J., Wichmann, E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985–1007 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Buchholz, D., Ojima, I., Roos, H.J.: Thermodynamic properties of non-equilibrium states in quantum field theory. Ann. Phys. 97, 219–242 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Buchholz, D., Solveen, Ch.: Unruh effect and the concept of temperature. Class. Quantum Gravity 30, 085011 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Buchholz, D., Verch, R.: Macroscopic aspects of the Unruh effect. Class. Quantum Gravity 32, 245004 (2015)

    Article  ADS  MATH  Google Scholar 

  6. Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787–838 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. De Bièvre, S., Merkli, M.: The Unruh effect revisited. Class. Quantum Gravity 23, 6525–6541 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dereziński, J., Jakšić, V.: Return to equilibrium for Pauli-Fierz systems. Ann. Henri Poincaré 4, 739–793 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fulling, S.A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850–2862 (1973)

    Article  ADS  Google Scholar 

  10. Fulling, S.A., Ruijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. Haag, R.: Local Quantum Physics. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  12. Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Comm. Math. Phys. 5, 215–236 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Haag, R., Narnhofer, H., Stein, U.: On quantum field theory in gravitational background. Comm. Math. Phys. 94, 219–238 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. Haggard, H.M., Rovelli, C.: Death and resurrection of the zeroth principle of thermodynamics. Phys. Rev. D 87, 084001 (2013)

    Article  ADS  Google Scholar 

  15. Pusz, W., Woronowicz, S.L.: Passive states and KMS states for general quantum systems. Comm. Math. Phys. 58, 273–290 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  16. Russo, J.G., Townsend, P.K.: On the thermodynamics of moving bodies. Class. Quantum Gravity 27, 175005 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Comm. Math. Phys. 214, 705–731 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sciama, D.W., Candelas, P., Deutsch, D.: Quantum field theory, horizons and thermodynamics. Adv. Phys. 30, 327–366 (1981)

    Article  ADS  Google Scholar 

  19. Sewell, G.L.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141, 201–224 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  20. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Benjamin, New York (1964)

    MATH  Google Scholar 

  21. Takesaki, M.: Disjointness of the KMS state of different temperatures. Comm. Math. Phys. 17, 33–41 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  22. Tolman, R.C.: On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 35, 904–924 (1930)

    Article  ADS  MATH  Google Scholar 

  23. Tolman, R.C., Ehrenfest, P.: Temperature equilibrium in a static gravitational field. Phys. Rev. 36, 1791–1798 (1930)

    Article  ADS  Google Scholar 

  24. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  25. Unruh, W.G.: Thermal bath and decoherence of Rindler spacetime. Phys. Rev. D 46, 3271–3277 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Univ. Chicago Press, Chicago (1994)

    MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge stimulating critical comments by S.A. Fulling, G.L. Sewell and W.G. Unruh and an intense exchange with R.M. Wald on our differing views.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Verch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchholz, D., Verch, R. Unruh versus Tolman: on the heat of acceleration. Gen Relativ Gravit 48, 32 (2016). https://doi.org/10.1007/s10714-016-2029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2029-2

Keywords

Navigation