Skip to main content
Log in

Closed timelike loops in homogeneous rotating \(\varLambda \)-dust cosmologies

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We analyze what we believe to be all known homogeneous rotating \(\varLambda \)-dust cosmologies, to see if they contain closed timelike loops (CTLs). We investigate only these exact GR solutions because they appear to most closely resemble our own universe (apart from rotation and expansion). These solutions are all somewhat similar to the Gödel solution, which is known to contain CTLs. Of these solutions, it turns out that exactly those with \(\varLambda <0\) possess CTLs. The paper also analyzes the solutions to see if they satisfy the four “Energy Conditions” (Weak, Null, Strong, Dominant), and shows that all four are satisfied—but only by the families containing CTLs! It is amusing to note that our current universe violates the Strong Energy Condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nahin, P.: Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction. Springer, New York (1999)

    Book  Google Scholar 

  2. Tipler, F.: Rotating cylinders and the possibility of causality violation. Phys. Rev. 9(8), 2203–2206 (1974)

    MathSciNet  ADS  Google Scholar 

  3. van Stockum, W.: Proc. R. Soc. Edinb. 57, 135 (1937)

    Article  Google Scholar 

  4. Lánczos, K.: Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie. Z. Angew. Phys. 21, 73–110 (1924)

    Google Scholar 

  5. Gödel, K.: An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447–450 (1949)

    Article  ADS  Google Scholar 

  6. Rosquist, K.: Global rotation. Gen. Relativ. Gravit. 12(8), 649–664 (1980)

    MathSciNet  ADS  Google Scholar 

  7. Hawking, S., Ellis, G.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  8. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174(5), 1559–1571 (1968)

    Article  ADS  Google Scholar 

  9. Stephani, H., Kramer, D., et al.: Exact Solutions of Einstein’s Field Equations (Second Edition). Cambridge Monographs on Mathematical Physics, Cambridge (2003)

  10. Korotkii, V., Obukhov, Y.: Rotating and expanding cosmology in ECSK theory. Astrophys. Space Sci. 198(1), 1–12 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  11. Assad, M., Soares, J.: Anisotropic bianchi types VIII and IX locally rotationally symmetric cosmologies. Phys. Rev. D 28, 1858–1865 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. Krasiński, A.: Rotating dust solutions of Einstein’s equations with 3-dimensional symmetry groups. I. Two Killing fields spanned on \(u^\alpha \) and \(w^\alpha \). J. Math. Phys. 39, 380 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  13. Krasiński, A.: Rotating dust solutions of Einstein’s equations with 3-dimensional symmetry groups, Part 2: One killing field spanned on \(u^\alpha \) and \(w^\alpha \). J. Math. Phys. 39, 401 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  14. Krasiński, A.: Rotating dust solutions of Einstein’s equations with 3-dimensional symmetry groups, Part 3: All killing fields linearly independent of \(u^\alpha \) and \(w^\alpha \). J. Math. Phys. 39, 2148 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  15. Krasiński, A.: Rotating Bianchi type V dust models generalizing the k = -1 Friedmann model. J. Math. Phys. 42, 355 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  16. Krasiński, A.: Friedmann limits of rotating hypersurface-homogeneous dust models. J. Math. Phys. 42, 3628 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ozsváth, I.: New homogeneous solutions of Einstein’s field equations with incoherent matter, Akad. Wiss. Lit. Mainz, Abh. Math.-Nat. K1. 1 (1965)

  18. Ozsváth, I., Schücking, E.: The finite rotating universe. Ann. Phys. 55, 166 (1969)

    Article  ADS  Google Scholar 

  19. Ozsváth, I.: Dust-filled universes of Class II and Class III. J. Math. Phys. 11(9), 2871–2882 (1970)

    Article  ADS  Google Scholar 

  20. Obukhov, Y., Chrobok, T., Scherfner, M.: Shear-free rotating inflation. Phys. Rev. D 66, 043518 (2002)

    Article  ADS  Google Scholar 

  21. Raychaudhuri, A., Thakurta, S.: Homogeneous space-times of the Gödel type. Phys. Rev. D 22, 802 (1980)

    Article  ADS  Google Scholar 

  22. Maitra, S.C.: Stationary dust-filled cosmological solution with \(\Lambda =0\) and without closed timelike lines. J. Math. Phys. 7, 1025 (1966)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Lindsay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindsay, D.S. Closed timelike loops in homogeneous rotating \(\varLambda \)-dust cosmologies. Gen Relativ Gravit 47, 83 (2015). https://doi.org/10.1007/s10714-015-1919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1919-z

Keywords

Navigation