Advertisement

Creating images by adding masses to gravitational point lenses

  • Olivier Sète
  • Robert LuceEmail author
  • Jörg Liesen
Editor's Choice (Letter)

Abstract

A well-studied maximal gravitational point lens construction of S. H. Rhie produces \(5n\) images of a light source using \(n+1\) deflector masses. The construction arises from a circular, symmetric deflector configuration on \(n\) masses (producing only \(3n+1\) images) by adding a tiny mass in the center of the other mass positions (and reducing all the other masses a little bit). In a recent paper we studied this “image creating effect” from a purely mathematical point of view (Sète, Luce & Liesen, Comput. Methods Funct. Theory 15(1), 2014). Here we discuss a few consequences of our findings for gravitational microlensing models. We present a complete characterization of the effect of adding small masses to these point lens models, with respect to the number of images. In particular, we give several examples of maximal lensing models that are different from Rhie’s construction and that do not share its highly symmetric appearance. We give generally applicable conditions that allow the construction of maximal point lenses on \(n+1\) masses from maximal lenses on \(n\) masses.

Keywords

Gravitational lenses Multiple images Maximal lensing 

Notes

Acknowledgments

We are grateful to the anonymous referee for reading the manuscript and providing us with useful comments.

References

  1. 1.
    An, J.H., Evans, N.W.: The Chang–Refsdal lens revisited. Mon. Not. R. Astron. Soc. 369(1), 317–334 (2006). doi: 10.1111/j.1365-2966.2006.10303.x
  2. 2.
    Bayer, J., Dyer, C.C.: Maximal lensing: mass constraints on point lens configurations. Gen. Relativ. Gravit. 39(9), 1413–1418 (2007). doi: 10.1007/s10714-007-0463-x CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bayer, J., Dyer, C.C.: Erratum: Maximal lensing: mass constraints on point lens configurations. Gen. Relativ. Gravit. 41(3), 669 (2009). doi: 10.1007/s10714-008-0741-2 CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Khavinson, D., Lundberg, E.: Gravitational lensing by a collection of objects with radial densities. Anal. Math. Phys. 1(2–3), 139–145 (2011). doi: 10.1007/s13324-011-0010-5 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Khavinson, D., Neumann, G.: On the number of zeros of certain rational harmonic functions. Proc. Am. Math. Soc. 134(4), 1077–1085 (2006). doi: 10.1090/S0002-9939-05-08058-5 CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Khavinson, D., Neumann, G.: From the fundamental theorem of algebra to astrophysics: a “harmonious” path. Not. Am. Math. Soc. 55(6), 666–675 (2008)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Luce, R., Sète, O., Liesen, J.: A Note on the Maximum Number of Zeros of \(r(z) - \bar{z}\). Comput. Methods Funct. Theory (2015). doi: 10.1007/s40315-015-0110-6
  8. 8.
    Luce, R., Sète, O., Liesen, J.: Sharp parameter bounds for certain maximal point lenses. Gen. Relativ. Gravit. 46, 1736 (2014). doi: 10.1007/s10714-014-1736-9
  9. 9.
    Mao, S., Petters, A.O., Witt, H.J.: Properties of point mass lenses on a regular polygon and the problem of maximum number of images. In: The Eighth Marcel Grossmann Meeting. Part A, B (Jerusalem, 1997), pp. 1494–1496. World Sci. Publ, River Edge, NJ (1999)Google Scholar
  10. 10.
    Petters, A.O., Levine, H., Wambsganss, J.: Singularity Theory and Gravitational Lensing, Progress in Mathematical Physics, vol. 21. Birkhäuser Boston Inc, Boston, MA (2001). doi: 10.1007/978-1-4612-0145-8. (With a foreword by David Spergel)CrossRefGoogle Scholar
  11. 11.
    Petters, A.O., Werner, M.C.: Mathematics of gravitational lensing: multiple imaging and magnification. Gen. Relativ. Gravit. 42(9), 2011–2046 (2010). doi: 10.1007/s10714-010-0968-6 CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Rhie, S.H.: n-point Gravitational Lenses with 5(n-1) Images. ArXiv Astrophysics e-prints (2003)Google Scholar
  13. 13.
    Sète, O., Luce, R., Liesen, J.: Perturbing rational harmonic functions by poles. Comput. Methods Funct. Theory 15(1):9–35 (2015). doi: 10.1007/s40315-014-0083-x
  14. 14.
    Straumann, N.: Complex formulation of lensing theory and applications. Helv. Phys. Acta 70(6), 894–908 (1997)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Wambsganss, J.: Gravitational lensing in astronomy. Living Rev. Relativ. 1(12), lrr-1998-12 (1998). http://www.livingreviews.org/lrr-1998-12. doi: 10.12942/1rr-1998-12

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.TU Berlin, MA 4-5BerlinGermany

Personalised recommendations