Skip to main content

Summary of session C6: Q&A—everything you wanted to know about gravitational waves but were afraid to ask

Abstract

The paper summarizes the parallel session C6 Q&A—everything you wanted to know about gravitational waves but were afraid to ask of the joint 10th Amaldi Conference on Gravitational Waves and 20th International Conference on General Relativity and Gravitation.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    In principle one could consider the re-emission by the system made by the beam-splitter and the mirror, which has a time-varying quadrupole \(Q_{xx}(t)\simeq \mu \xi ^2(t)\). From the standard Einstein quadrupole formula \(dE/dt|_{emitted}= G_N{\mathop {Q}\limits ^{\ldots }_{ij}}^2/5\sim G_N\mu ^2L^4\omega _{GW}^6h_0^2\), which can be compared to the absorption given from Eq. (10) to obtain \(dE/dt|_{emitted}\sim dE/dt|_{absorbed}\times 6\times 10^{-22} \left( \frac{\omega _0}{2\pi Hz}\right) ^{-1} \left( \frac{\omega _{GW}}{2\pi kHz}\right) ^4\left( \frac{Q}{10^8}\right) \left( \frac{\mu }{1kg}\right) \left( \frac{L}{3km}\right) ^2\), hence completely negligible.

  2. 2.

    Actually, we use the respondent’s prerogative to answer in a different spirit: in honour of our host nation, the respondent offers in wager a bottle of his favourite vodka [65].

  3. 3.

    Respondent’s prerogative again: we round up to 3 months.

References

  1. 1.

    Weisberg, J.M., Nice, D.J., Taylor, J.H.: Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030–1034 (2010). doi:10.1088/0004-637X/722/2/1030

    Article  ADS  Google Scholar 

  2. 2.

    Kramer, M., Stairs Ingrid, H., Manchester, R.N., McLaughlin, M.A., Lyne, A.G., et al.: Tests of general relativity from timing the double pulsar. Science 314, 97–100 (2006). doi:10.1126/science.1132305

    Article  ADS  Google Scholar 

  3. 3.

    Antoniadis, John, Freire Paulocc, C.C., Wex, Norbert, Tauris Thomas, M., Lynch Ryan, S., et al.: A massive pulsar in a compact relativistic binary. Science 340, 6131 (2013). doi:10.1126/science.1233232

    Article  ADS  Google Scholar 

  4. 4.

    Brown, W.R., Kilic, M., Hermes, J.J., Allende Prieto, C., Kenyon, S.J., Winget, D.E.: A 12 minute orbital period detached white dwarf eclipsing binary. Astrophys. J. Lett. 737, L23 (2011). doi:10.1088/2041-8205/737/1/L23

    Article  ADS  Google Scholar 

  5. 5.

    Nelemans G.: Private communication (2013)

  6. 6.

    Vila, S.C.: Late evolution of close binaries. Astrophys. J. 168, 217 (1971). doi:10.1086/151076

    Article  ADS  Google Scholar 

  7. 7.

    Ramsay, G., Groot, P.J., Marsh, T., Nelemans, G., Steeghs, D. et al.: XMM-Newton observations of AM CVn binaries: V396 Hya and SDSS J1240–01. Astron. Astrophys. 457, 623–627 (2006)

  8. 8.

    Bildsten, L.: Gravitational radiation and rotation of accreting neutron stars. Astrophys. J. Lett. 501, L89 (1998). doi:10.1086/311440

    Article  ADS  Google Scholar 

  9. 9.

    Isaacson, R.A.: Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor. Phys. Rev. 166, 1272–1279 (1968). doi:10.1103/PhysRev.166.1272

    Article  ADS  Google Scholar 

  10. 10.

    Kennefic D.: Controversies in the history of the radiation reaction problem in general relativity. gr-qc/9704002 (1997)

  11. 11.

    Chatziioannou, K., Yunes, N., Cornish, N.: Model-independent test of general relativity: an extended post-einsteinian framework with complete polarization content. Phys. Rev. D 86, 022004 (2012). doi:10.1103/PhysRevD.86.022004

    Article  ADS  Google Scholar 

  12. 12.

    Laplace, P.: A Treatise in Celestial Mechanics. Chelsea, New York (1966). originally published in 1805

    Google Scholar 

  13. 13.

    Carlip, S.: Aberration and the speed of gravity. Phys. Lett. A 267, 81–87 (2000). doi:10.1016/S0375-9601(00)00101-8

    MathSciNet  Article  MATH  ADS  Google Scholar 

  14. 14.

    Burke, W.L.: Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions. J. Math. Phys. 12, 401–418 (1971). doi:10.1063/1.1665603

    Article  ADS  Google Scholar 

  15. 15.

    Filippenko, A.V.: Optical spectra of supernovae. Ann. Rev. Astron. Astrophys. 35, 309 (1997)

    Article  ADS  Google Scholar 

  16. 16.

    Hillebrandt, W., Niemeyer, J.C.: Type IA supernova explosion models. Ann. Rev. Astron. Astrophys. 38, 191–230 (2000)

    Article  ADS  Google Scholar 

  17. 17.

    Roepke FK.: Thermonuclear supernovae. arXiv:08042147 (2008)

  18. 18.

    Falta, D., Fisher, R., Khanna, G.: Gravitational wave emission from the single-degenerate channel of type Ia supernovae. Phys. Rev. Lett. 106(20), 201103 (2011)

    Article  ADS  Google Scholar 

  19. 19.

    Bethe, H.A.: Supernova mechanisms. Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  20. 20.

    Janka, H.T., Langanke, K., Marek, A., Martínez-Pinedo, G., Müller, B.: Theory of core-collapse supernovae. Phys. Rep. 442, 38 (2007)

    Article  ADS  Google Scholar 

  21. 21.

    Kasen, D., Woosley, S.E., Heger, A.: Pair instability supernovae: light curves, spectra, and shock breakout. Astrophys. J. 734, 102 (2011)

    Article  ADS  Google Scholar 

  22. 22.

    Fryer, C.L., Woosley, S.E., Heger, A.: Pair-instability supernovae, gravity waves, and gamma-ray transients. Astrophys. J. 550, 372–382 (2001). doi:10.1086/319719

    Article  ADS  Google Scholar 

  23. 23.

    Ott, C.D.: TOPICAL REVIEW: The gravitational-wave signature of core-collapse supernovae. Class Quantum Grav. 26, 063001 (2009). doi:10.1088/0264-9381/26/6/063001

    Article  ADS  Google Scholar 

  24. 24.

    Kotake, K.: Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae. Comptes Rendus Phys. 14(4), 318–351 (2013)

  25. 25.

    O’Connor, E., Ott, C.D.: Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011)

    Article  ADS  Google Scholar 

  26. 26.

    Ugliano, M., Janka, H.T., Marek, A., Arcones, A.: Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors. Astrophys. J. 69, 757 (2012). doi:10.1088/0004-637X/757/1/69

    Google Scholar 

  27. 27.

    Bethe, H.A., Wilson, J.R.: Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14 (1985). doi:10.1086/163343

    Article  ADS  Google Scholar 

  28. 28.

    Janka, H.T., Hanke, F., Hüdepohl, L., Marek, A., Müller, B., Obergaulinger, M.: Core-collapse supernovae: reflections and directions. Prog. Theor. Exp. Phys. 2012(1), 01A309 (2012)

    Article  Google Scholar 

  29. 29.

    Burrows, A.: Colloquium: perspectives on core-collapse supernova theory. Rev. Mod. Phys. 85, 245 (2013). doi:10.1103/RevModPhys.85.245

    Article  ADS  Google Scholar 

  30. 30.

    Liebendörfer, M., Rampp, M., Janka, H.T., Mezzacappa, A.: Supernova simulations with Boltzmann neutrino transport: a comparison of methods. Astrophys. J. 620, 840 (2005)

    Article  ADS  Google Scholar 

  31. 31.

    Kitaura, F.S., Janka, H.T., Hillebrandt, W.: Explosions of O–Ne–Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys. 450, 345 (2006)

    Article  ADS  Google Scholar 

  32. 32.

    Hüdepohl, L., Müller, B., Janka, H.T., Marek, A., Raffelt, G.G.: Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys. Rev. Lett. 104, 251101 (2010)

    Article  ADS  Google Scholar 

  33. 33.

    Ott, C.D., Abdikamalov, E., Mösta, P., Haas, R., Drasco, S., O’Connor, E.P., Reisswig, C., Meakin, C.A., Schnetter, E.: General-relativistic simulations of three-dimensional core-collapse supernovae. Astrophys. J. 768, 115 (2013)

    Article  ADS  Google Scholar 

  34. 34.

    Hanke, F., Müller, B., Wongwathanarat, A., Marek, A., Janka, H.T.: SASI activity in three-dimensional neutrino-hydrodynamics simulations of supernova cores. Astrophys. J. 770, 66 (2013)

    Article  ADS  Google Scholar 

  35. 35.

    Takiwaki, T., Kotake, K., Suwa, Y.: A comparison of two- and three-dimensional neutrino-hydrodynamics simulations of core-collapse supernovae. Astrophys. J. 786(2), 83 (2014)

  36. 36.

    Bruenn, S.W., Mezzacappa, A., Hix, W.R., Lentz, E.J., Bronson Messer, O.E., Lingerfelt, E.J., Blondin, J.M., Endeve, E., Marronetti, P.: Axisymmetric Ab initio core-collapse supernova simulations of 12–25 M\(_{\odot }\) stars. Astrophys. J. Lett. 767, L6 (2013)

    Article  ADS  Google Scholar 

  37. 37.

    Couch, S.M.: Ott CD revival of the stalled core-collapse supernova shock triggered by precollapse asphericity in the progenitor star. Astrophys. J. Lett. 778, L7 (2013)

    Article  ADS  Google Scholar 

  38. 38.

    Couch, S.M., O’Connor, E.P.: High-resolution three-dimensional simulations of core-collapse supernovae in multiple progenitors. Astrophys. J. 785(2), 123 (2014)

  39. 39.

    Müller, B., Janka, H.T., Marek, A.: Ott CD revival of the stalled core-collapse supernova shock triggered by precollapse asphericity in the progenitor star. Astrophys. J. 756, 84 (2012). doi:10.1088/0004-637X/756/1/84

    Article  ADS  Google Scholar 

  40. 40.

    Müller, B., Janka, H.T., Heger, A.: New two-dimensional models of supernova explosions by the neutrino-heating mechanism: evidence for different instability regimes in collapsing stellar cores. Astrophys. J. 761, 72 (2012). doi:10.1088/0004-637X/761/1/72

    Article  ADS  Google Scholar 

  41. 41.

    Blondin, J.M., Mezzacappa, A., DeMarino, C.: Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys. J. 584, 971 (2003). doi:10.1086/345812

    Article  ADS  Google Scholar 

  42. 42.

    Guilet, J., Foglizzo, T.: On the linear growth mechanism driving the standing accretion shock instability. Mon. Not. R. Astron. Soc. 421, 546 (2012). doi:10.1111/j.1365-2966.2012.20333.x

    ADS  Google Scholar 

  43. 43.

    Smith, N., Li, W., Filippenko, A.V., Chornock, R.: Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Mon. Not. R. Astron. Soc. 412, 1522 (2011)

    Article  ADS  Google Scholar 

  44. 44.

    Burrows, A., Dessart, L., Livne, E., Ott, C.D., Murphy, J.: Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation. Astrophys. J. 664, 416 (2007)

    Article  ADS  Google Scholar 

  45. 45.

    Ott, C.D., Burrows, A., Thompson, T.A., Livne, E., Walder, R.: The spin periods and rotational profiles of neutron stars at birth. Astrophys. J. Suppl. Ser. 164, 130 (2006)

    Article  ADS  Google Scholar 

  46. 46.

    Takiwaki, T., Kotake, K.: Gravitational wave signatures of magnetohydrodynamically driven core-collapse supernova explosions. Astrophys. J. 743, 30 (2011). doi:10.1088/0004-637X/743/1/30

    Article  ADS  Google Scholar 

  47. 47.

    Dimmelmeier, H., Ott, C.D., Marek, A., Janka, H.T.: Gravitational wave burst signal from core collapse of rotating stars. Phys. Rev. D 78, 064056 (2008)

    Article  ADS  Google Scholar 

  48. 48.

    Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.T., Hawke, I., Zink, B., Schnetter, E.: 3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state. Phys. Rev. Lett. 98, 261101 (2007)

    Article  ADS  Google Scholar 

  49. 49.

    Kuroda, T., Takiwaki, T., Kotake, K.: Gravitational wave signatures from low-mode spiral instabilities in rapidly rotating supernova cores. Phys. Rev. D 89(4), 044011 (2014)

  50. 50.

    Abdikamalov, E., Gossan, S., DeMaio, A.M., Ott, C.D.: Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves. arXiv:13113678 (2013)

  51. 51.

    Ott, C.D., Abdikamalov, E., O’Connor, E., Reisswig, C., Haas, R., Kalmus, P., Drasco, S., Burrows, A., Schnetter, E.: Correlated gravitational wave and neutrino signals from general-relativistic rapidly rotating iron core collapse. Phys. Rev. D. 86(2), 024026 (2012). doi:10.1103/PhysRevD.86.024026

    Article  ADS  Google Scholar 

  52. 52.

    Reisswig, C., Ott, C.D., Sperhake, U., Schnetter, E.: Gravitational wave extraction in simulations of rotating stellar core collapse. Phys. Rev. D 83(6), 064008 (2011)

    Article  ADS  Google Scholar 

  53. 53.

    Logue, J., Ott, C.D., Heng, I.S., Kalmus, P., Scargill, J.: Inferring core-collapse supernova physics with gravitational waves. Phys. Rev. D. 86(4), 044023 (2012). doi:10.1103/PhysRevD.86.044023

    Article  ADS  Google Scholar 

  54. 54.

    https://www.advancedligo.mit.edu/tech_overview.html

  55. 55.

    Gwo, D-H.: Ultra precision and reliable bonding method, United States Patent Number US6284085B1 (2001)

  56. 56.

    Rowan, S., et al.: Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica. Phys. Lett. A 246, 471–478 (1998)

    Article  ADS  Google Scholar 

  57. 57.

    http://boinc.berkeley.edu/

  58. 58.

    http://einstein.phys.uwm.edu/

  59. 59.

    Maggiore, M.: Gravitational Waves. Oxford University Press, Oxford (2008)

    Google Scholar 

  60. 60.

    Pirani, F.: Measurements of classical gravitation fields. In: DeWitt, C.M., Rickles, D. (eds.) The Role of Gravitation in Physics. Proceedings of the 1957 Chapel Hill Conference, Max Planck Research Library for the History and Development of Knowledge (1957)

  61. 61.

    Hartle, J.B.: Gravity. An Introduction to Einstein’s General Relativity. Addison Wesley, S. Franscisco (2003)

    Google Scholar 

  62. 62.

    Freise A., Strain, K.A.: Interferometer techniques for gravitational-wave detection. Living Rev. Relativ. 13(1) (2010) http://www.livingreviews.org/lrr-2010-1

  63. 63.

    Hough J.: In Perth 1988, Proceedings, Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, pt. A, pp. 265–282 (1988)

  64. 64.

    Saulson, P.R.: How an interferometer extracts and amplifies power from a gravitational wave. Class. Quant. Grav. 14, 2435 (1997)

    Article  ADS  Google Scholar 

  65. 65.

    http://www.zubrowka.com/

  66. 66.

    McMillan, P.: MNRAS 414, 2446 (2011)

  67. 67.

    Abadie, J., et al.: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class. Quant. Grav. 27, 173001 (2010)

    Article  ADS  Google Scholar 

  68. 68.

    Aasi, J., et al.: Prospects for localization of gravitational wave transients by the advanced LIGO and advanced virgo observatories. arXiv:1304.0670 (2013)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Fafone.

Additional information

V. Fafone is C6 session’s co-chairperson.

P. J. Sutton is C6 session’s co-chairperson and contributor.

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fafone, V., Sutton, P.J., Cornish, N. et al. Summary of session C6: Q&A—everything you wanted to know about gravitational waves but were afraid to ask. Gen Relativ Gravit 46, 1782 (2014). https://doi.org/10.1007/s10714-014-1782-3

Download citation

Keywords

  • Gravitational radiation
  • Theory
  • Detectors
  • Sources