Advertisement

Dark matter interacts with variable vacuum energy

Research Article

Abstract

We investigate a spatially flat Friedmann–Robertson–Walker scenario with two interacting components, dark matter and variable vacuum energy densities, plus two decoupled components, one is a baryon term while the other behaves as a radiation component. We consider a linear interaction in the derivative dark component density. We apply the \(\chi ^2\) method to the observational Hubble data for constraining the cosmological parameters and analyze the amount of dark energy in the radiation era for the model. It turns out that our model fulfills the severe bound of \(\Omega _{x}(z\simeq 1{,}100)<0.009\) at \(2\sigma \) level, so is consistent with the recent analysis that include cosmic microwave background anisotropy measurements from Planck survey, the future constraints achievable by Euclid and CMBPol experiments, reported for the behavior of the dark energy at early times, and fulfills the stringent bound \(\Omega _{x}(z\simeq 10^{10})<0.04\) at \(2\sigma \) level in the big-bang nucleosynthesis epoch. We also examine the cosmic age problem at high redshift associated with the old quasar APM 08279+5255 and estimate the age of the universe today.

Keywords

Interaction Variable vacuum energy Early dark energy Age of the universe 

Notes

Acknowledgments

The author would like to thank Prof. L. P. Chimento for useful comments that greatly improved the clarity of the manuscript. Also acknowledges the support of CONICET, IMAS and Math. Department, FyCEN-UBA.

References

  1. 1.
    Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998)Google Scholar
  2. 2.
    Riess, A.G., et al.: Astrophys. J. 117, 707 (1999)Google Scholar
  3. 3.
    Perlmutter, S., et al.: The Supernova Cosmology Project. Astrophys. J. 517, 56586 (1999)CrossRefGoogle Scholar
  4. 4.
    Astier, P., et al.: Astron. Astrophys. 447, 31 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Spergel, D.N., et al.: Astrophys. J. Suppl. 170, 377 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Adelman-McCarthy, J.K., et al.: [SDSS Collaboration], [ arXiv:0707.3413]
  8. 8.
    Tegmark, M., et al.: Astrophys. J. 606, 702 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Drees, M., Gerbier, G.: [ arXiv:1204.2373 [hep-ph]
  11. 11.
    Garrett, K., Duda, G.: Adv. Astron. 968283 (2011)Google Scholar
  12. 12.
    Chimento, L.P.: Phys. Rev. D 81, 043525 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Chimento, L.P., Richarte, M.G.: (2014) [ arXiv:1402.6371v1 [astro-ph.CO]]
  14. 14.
    Chen, X., Gong, Y., Saridakis, E.N.: Int. J. Theor. Phys. 53, 469–481 (2014)CrossRefGoogle Scholar
  15. 15.
    Chimento, L.P., Richarte, M.G.: Phys. Rev. D 85, 127301 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Chimento, L.P., Richarte, M.G.: Phys. Rev. D 86, 103501 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Chimento, L.P., Richarte, M.G.: Eur. Phys. J. C 73, 2497 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Chimento, L.P., Richarte, M.G., Sánchez G, I.: Phys. Rev. D 88, 087301 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Ade, P.A.R., et al.: [ arXiv:1303.5076v1]
  20. 20.
    Hollenstein, L., Sapone, D., Crittenden, R., Schaefer, B.M.: JCAP 0904, 012 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Basilakos, S.: Astron. Astrophys. 12575 (2009)Google Scholar
  22. 22.
    Lima, J.A.S., Basilakos, S., Costa, F.E.M.: Phys. Rev. D 86, 103534 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Stern, D., Jimenez, R., Verde, L., Kamionkowski, M., Stanford, S.A.: JCAP 1002, 008 (2010). [ arXiv:0907.3149 [astro-ph.CO]]ADSCrossRefGoogle Scholar
  24. 24.
    Simon, J., Verde, L., Jimenez, R.: Phys. Rev. D 71, 123001 (2005). [astro-ph/0412269]ADSCrossRefGoogle Scholar
  25. 25.
    Riess, A.G., et al.: Astrophys. J. 699, 539 (2009). [ arXiv:0905.0695 [astro-ph.CO]]ADSCrossRefGoogle Scholar
  26. 26.
    Moresco, M., et al.: JCAP 1208, 006 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Busca, N.G., et al.: (2012) [ arXiv:1211.2616 [astro-ph.CO]]
  28. 28.
    Zhang, C., et al.: (2012). [ arXiv:1207.4541 [astro-ph.CO]]
  29. 29.
    Blake, C., et al.: MNRAS 425, 405 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Chuang, C.H., Wang, Y.: (2012). [ arXiv:1209.0210 [astro.ph-CO]]
  31. 31.
    Komatsu, E., et al.: [ arXiv:1001.4538 [astro-ph.CO]]
  32. 32.
    Hinshaw, G., et al.: [ arXiv:1212.5226v3]
  33. 33.
    Farooq, O., Ratra, B.: [ arXiv:1301.5243 [astro-ph.CO]]
  34. 34.
    Press, W.H., et al.: Numerical Recipes in C. Cambrige University Press, Cambrige (1997)Google Scholar
  35. 35.
    Sivia, D.S., Skilling, J.: Data Analysis: A Bayesian Tutorial. Oxford University Press Inc, Oxford (2006)MATHGoogle Scholar
  36. 36.
    Doran, M., Robbers, G.: JCAP 0606, 026 (2006). astro-ph/0601544]ADSCrossRefGoogle Scholar
  37. 37.
    Calabrese, E., Huterer, D., Linger, E.V., Melchiorri, A., Pagano, L.: Phys. Rev. D 83, 123504 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Hou, Z., et al.: [ arXiv:1212.6267]
  39. 39.
    Calabrese, E., de Putter, R., Huterer, D., Linger, E.V., Melchiorri, A.: Phys. Rev. D 83, 023011 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Wright, E.L.: Astrophys. J. 664, 633–639 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Basilakos, S., Plionis, M., Solà, J.: Phys. Rev. D 80, 3511 (2009)Google Scholar
  42. 42.
    Alcaniz, J.S., Lima, J.A.S.: Astrophys. J. 521, L87 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Dunlop, J., et al.: Nature 381, 581 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    Spinrad, H., et al.: Astrophys. J. 484, 581 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    Dunlop, J.: In The Most Distant Radio Galaxies, Rottgering, H.J.A., Best P., Lehnert, M.D. (eds.), p. 71. Kluwer, Dordrecht (1999)Google Scholar
  46. 46.
    Stockton, A., Kellogg, M., Ridgway, S.E.: Astrophys. J. 443, L69 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    Yoshii, Y., Tsujimoto, T., Kawara, K.: Astrophys. J. 507, L113 (1998)ADSCrossRefGoogle Scholar
  48. 48.
    Hasinger, G., Schartel, N., Komossa, S.: Astrophys. J. 573, L77 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    Komossa, S., Hasinger, G.: astro-ph/0207321
  50. 50.
    Wei, H., Zhang, S.N.: Phys. Rev. D 76, 063003 (2007). [ astro-ph/0707.2129]ADSCrossRefGoogle Scholar
  51. 51.
    Tanvir, N.R., Fox, D.B., Levan, A.J., Berger, E., Wiersema, K., Fynbo, J.P.U., Cucchiara, A., Kruhler, T., et al.: Nature 461, 1254 (2009). [ arxiv.org/abs/0906.1577]
  52. 52.
    Salvaterra, R., Della Valle, M., Campana, S., Chincarini, G., Covino, S., DAvanzo, P., Fernandez-Soto, A., Guidorzi, C., et al.: [ arXiv:0906.1578]
  53. 53.
    Tong, M.L., Zhang, Y.: (2009). [ 0906.3646 [gr-qc]]
  54. 54.
    Yang, R.J., Zhang, S.N.: Mon. Not. R. Astron. Soc. 407, 1835 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    Chimento, L.P., Forte, M., Richarte, M.G.: Eur. Phys. J. C 73, 2285 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    Chimento, L.P., Forte, M., Richarte, M.G.: Mod. Phys. Lett. A 28, 1250235 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    Cui, Jinglei, Zhang, Xin: Phys. Lett. B 690, 233–238 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    Forte, M.: (2013). [ arXiv:1311.3921v1 [gr-qc]]
  59. 59.
    Reichardt, C.L., de Putter, R., Zahn, O., Hou, Z.: [ arXiv:1110.5328]

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departamento de Matemática, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires and IMASBuenos AiresArgentina
  2. 2.IMASCONICETBuenos AiresArgentina

Personalised recommendations