Skip to main content
Log in

Reformulation of electromagnetic and gravito-electromagnetic equations for Lorentz system with octonion algebra

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, the real, complex octonion algebra and their properties are defined. The electromagnetic and gravito-electromagnetic equations with monopoles in terms of S and \(\hbox {S}^{\prime }\) reference systems are presented in vector notations. Additionally, the duality transformations of gravito-electromagnetic situation for two reference systems are also represented. Besides, it is explained that Maxwell-like equations for gravito-electromagnetism are also invariant under Lorentz transformations. By introducing complex octonionic differential operator, a new generalized complex octonionic field term consisting of electromagnetic and gravito-electromagnetic components has been firstly suggested for Lorentz system. Afterwards, a complex octonionic source equation is obtained as in basic way, more compact and elegant notation. By defining a new complex octonionic general potential term, the field equation is attained once again. The components of complex octonionic field and wave equations are written in detailed for S and \(\hbox {S}^{\prime }\) reference systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway, J.H., Smith, D.: On Quaternions Octonions: Their Geometry, Arithmethic Symmetry. A. K. Peters, Canada (2003)

    Google Scholar 

  2. Okubo, S.: Introduction to Octonion and Other Non-Associative Algebras in Physics. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  3. Gürsey, F., Tze, C.H.: On The Role of Division, Jordan and Related Algebras in Particle Physics. World Scientific, USA (1996)

    Book  MATH  Google Scholar 

  4. Hestenes, D.: Space–Time Algebra. Gordon-Breach, New York (1966)

    MATH  Google Scholar 

  5. Jancewicz, B.: Multivectors and Clifford Algebra in Electrodynamics. World Scientific, Singapore (1989)

    Book  Google Scholar 

  6. Shaarawi, A.M.: Clifford algebra formulation of an electromagnetic charge–current wave theory. Found. Phys. 30, 1911–1941 (2000)

    Article  MathSciNet  Google Scholar 

  7. Cafaro, C., Ali, S.A.: The spacetime algebra approach to massive classical electrodynamics with magnetic monopoles. Adv. Appl. Clifford Algebras 17, 23–36 (2006)

    Article  MathSciNet  Google Scholar 

  8. Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39, 145–205 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carmody, K.: Circular and hyperbolic quaternions, octonions, and sedenions. Appl. Math. Comput. 28, 47–72 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carmody, K.: Circular and hyperbolic quaternions, octonions, and sedenions—further results. Appl. Math. Comput. 84, 27 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Imaeda, K., Imaeda, M.: Sedenions: algebra and analysis. Appl. Math. Comput. 115, 77–88 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Musés, C.: Applied hypernumbers: computational consepts. Appl. Math. Comput. 3, 211–216 (1976)

    Article  Google Scholar 

  13. Musés, C.: Hypernumbers II—further concepts and computational applications. Appl. Math. Comput. 4, 45–66 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Musés, C.: Hypernumbers applied ao how they interface with the physical world. Appl. Math. Comput. 60, 25–36 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Majerník, V.: Quaternionic formulation of the classical fields. Adv. Appl. Clifford Algebras 9, 119–130 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Majerník, V., Nagy, M.: Quaternionic form of Maxwell’s equations with sources. Lett. Nuovo Cimento 16, 265 (1976)

    Article  MathSciNet  Google Scholar 

  17. Gamba, A.: Maxwell’s equations in octonion form. Nuovo Cimento A 111, 293–302 (1998)

    ADS  Google Scholar 

  18. Gogberashvili, M.: Octonionic electrodynamics. J. Phys. A. Math. Gen. 39, 7099–7014 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Mironov, V.L., Mironov, S.V.: Octonic representation of electromagnetic field equations. J. Math. Phys. 50, 012901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Köplinger, J.: Signature of gravity in conic sedenions. Appl. Math. Comput. 188, 942–947 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Köplinger, J.: Dirac equation on hyperbolic octonions. Appl. Math. Comput. 182, 443–446 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tanışlı, M., Kansu, M. E., Demir, S.: A new approach to Lorentz invariance on electromagnetism with hyperbolic octonions. Eur. Phys. J. Plus 127, 69–79 (2012) (all references therein)

  23. Tanışlı, M.: Gauge transformation and electromagnetism with biquaternions. Europhys. Lett. 74, 569–573 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. Candemir, N., Tanışlı, M., Özdaş, K., Demir, S.: Hyperbolic octonionic Proca–Maxwell equations. Z. Naturforsch 63a, 15–18 (2008)

    Google Scholar 

  25. Demir, S., Tanışlı, M., Candemir, N.: Hyperbolic quaternion formulation of electromagnetism. Adv. Appl. Clifford Algebra 20, 547–563 (2010)

    Article  MATH  Google Scholar 

  26. Demir, S., Tanışlı, M.: Sedenionic formulation for generalized fields of dyons. Int. J. Theor. Phys. 51, 1239–1253 (2012)

    Article  MATH  Google Scholar 

  27. Nurowski, P.: Split octonions and Maxwell equations. Acta Phys. Pol. A. 116, 992–993 (2009)

    Google Scholar 

  28. Bisht, P.S., Negi, O.P.S.: Revisting quaternion dual electrodynamics. Int. J. Theor. Phys. 47, 3108–3120 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bisht, P.S., Dangwal, S., Negi, O.P.S.: Unified split octonion formulation of dyons. Int. J. Theor. Phys. 47, 2297–2313 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rawat, A.S., Negi, O.P.S.: Quaternion gravi-electromagnetism. Int. J. Theor. Phys. 21, 738–745 (2012)

    Article  MathSciNet  Google Scholar 

  31. Ulrych, S.: Gravitoelectromagnetism in a complex Clifford algebra. Phys. Lett. B. 633, 631–635 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Köplinger, J.: Gravity and electromagnetism on conic sedenions. Appl. Math. Comput. 188, 948–953 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Demir, S., Tanışlı, M.: Biquaternionic Proca-type generalization of gravity. Eur. Phys. J. Plus 126, 51–57 (2011)

    Article  Google Scholar 

  34. Demir, S., Tanışlı, M.: A compact biquaternionic formulation of massive field equations in gravi-electromagnetism. Eur. Phys. J. Plus 126, 115–126 (2011)

    Article  Google Scholar 

  35. Demir, S.: Hyperbolic octonion formulation of gravitational field equations. Int. J. Theor. Phys. 52, 105–116 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Demir, S., Tanışlı, M., Kansu, M.E.: Generalized hyperbolic octonion formulation for the fields of massive dyons and gravito-dyons. Int. J. Theor. Phys. 52, 3696–3711 (2013)

    Article  MATH  Google Scholar 

  37. Chanyal, B.C.: Octonion massive electrodynamics. Gen. Relativ. Gravit. 46, 1646 (2014)

    Article  MathSciNet  Google Scholar 

  38. Köplinger, J.: Quantum of area from gravitation on complex octonions. arXiv:gen-ph/0812.0212v1 (2008)

  39. Tolan, T., Özdaş, K., Tanışlı, M.: Reformulation of electromagnetism with octonions. Nuovo Cimento B 121, 43–55 (2006)

    ADS  Google Scholar 

  40. Tanışlı, M., Kansu, M.E.: Octonionic Maxwell’s equations for bi-isotropic media. J. Math. Phys. 52, 053511 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  41. Tanışlı, M., Jancewicz, B.: Octonionic Lorenz-like condition. Pramana J. Phys. 78(2), 165–174 (2012)

    Article  ADS  Google Scholar 

  42. Kansu, M.E., Tanışlı, M., Demir, S.: Electromagnetic energy conservation with complex octonions. Turk. J. Phys. 36, 438–445 (2012)

    Google Scholar 

  43. Heaviside, O.: A gravitational and electromagnetic analogy. Electrician 31, 281–282 (1893)

    Google Scholar 

  44. Mashhoon, B.: Gravitoelectromagnetism: a brief review. arXiv:gr-qc/0311030v2 (2008)

  45. Mashhoon, B.: Gravitoelectromagnetism. arXiv:gr-qc/0011014v1 (2000)

  46. Argyris, J., Ciubotariu, C.: Massive gravitons in general relativity. Aust. J. Phys. 50, 879–891 (1997)

    ADS  MATH  Google Scholar 

  47. Dirac, P.A.M.: The theory of magnetic poles. Phys. Rev. 74, 817 (1948)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  49. Zwanziger, D.: Exactly soluble nonrelativistic model of particles with both elecric and magnetic charges. Phys. Rev. 176, 1480–1488 (1968)

    Article  ADS  Google Scholar 

  50. Zwanziger, D.: Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489–1495 (1968)

    Article  ADS  Google Scholar 

  51. Schwinger, J.J.: A magnetic model of matter. Science 165, 757–761 (1969)

    Article  ADS  Google Scholar 

  52. Jackson, J.D.: Classical electrodynamics, 3rd edn. Wiley, USA (1999)

    MATH  Google Scholar 

  53. Kyriakopoulos, E.: Equations of a massive electrodynamics with magnetic charges. Phys. Rev. D 16, 517–519 (1977)

    Article  ADS  Google Scholar 

  54. Cabibbo, N., Ferrari, E.: Quantum electrodynamics with dirac monopoles. Nuovo Cimento 23, 1147–1154 (1962)

    Article  MathSciNet  Google Scholar 

  55. Bisht, P.S., Pushpa, Negi, O.P.S.: Magnetohydrodynamics in presence of electric and magnetic charges. Commun. Phys. 22, 111–124 (2012)

  56. Dehnen, H., Negi, O.P.S.: Electromagnetic duality, quaternion and supersymmetric Gauge theories of dyons. Int. J. Theor. Phys. 50, 1908–1918 (2011)

  57. Negi, O.P.S., Dehnen, H., Karnatak, G., Bisht, P.S.: Generalization of Schwinger–Zwanziger dyon to quaternion. Int. J. Theor. Phys. 50, 1908–1918 (2011)

  58. Plebanski, J.F., Przanwski, M.: Duality transformations in electrodynamics. Int. J. Theor. Phys. 33, 1535–1551 (1994)

    Article  Google Scholar 

  59. Figueroa, J. M.: Electromagnetic duality for children. http://www.maths.ed.ac.uk/jmf/Teaching/Lectures/EDC

  60. Polchinski, J.: Monopoles, duality, and string theory. Int. J. Mod. Phys. A 19, 145–156 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Emre Kansu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanışlı, M., Kansu, M.E. & Demir, S. Reformulation of electromagnetic and gravito-electromagnetic equations for Lorentz system with octonion algebra. Gen Relativ Gravit 46, 1739 (2014). https://doi.org/10.1007/s10714-014-1739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1739-6

Keywords

Navigation