Quantum fields in curved spacetime, semiclassical gravity, quantum gravity phenomenology, and analogue models: parallel session D4

  • Christopher J. Fewster
  • Stefano LiberatiEmail author
Review Article
Part of the following topical collections:
  1. The First Century of General Relativity: GR20/Amaldi10


The talks given in parallel session D4 are summarized.


Quantum field theory in curved spacetimes Semiclassical gravity Quantum gravity phenomenology Analogue models of gravity 


  1. 1.
    Amelino-Camelia, G., Fiore, F., Guetta, D., Puccetti, S.: Quantum-spacetime scenarios and soft spectral lags of the remarkable GRB130427A (2013). arXiv:1305.2626
  2. 2.
    Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: The principle of relative locality. Phys. Rev. D 84, 084010 (2011). doi: 10.1103/PhysRevD.84.084010. arXiv:1101.0931
  3. 3.
    Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: Noisy soccer balls. Phys. Rev. D 88, 028702 (2013). doi: 10.1103/PhysRevD.88.028702. arXiv:1307.0246
  4. 4.
    Amelino-Camelia, G., Guetta, D., Piran, T.: Possible Relevance of Quantum Spacetime for Neutrino-Telescope Data Analyses (2013). arXiv:1303.1826
  5. 5.
    Baccetti, V., Visser, M.: Clausius Entropy for Arbitrary Bifurcate Null Surfaces (2013). arXiv:1302.0724
  6. 6.
    Banburski, A., Freidel, L.: Snyder Momentum Space in Relative Locality (2013). arXiv:1308.0300
  7. 7.
    Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian Principal Connections on Lorentzian Manifolds (2013). arXiv:1303.2515
  8. 8.
    Bini, D., Esposito, G., Kiefer, C., Krämer, M., Pessina, F.: On the modification of the cosmic microwave background anisotropy spectrum from canonical quantum gravity. Phys. Rev. D 87, 104008 (2013). doi: 10.1103/PhysRevD.87.104008. arXiv:1303.0531
  9. 9.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003). arXiv:math-ph/0112041
  10. 10.
    Bruschi, D.E., Louko, J., Faccio, D., Fuentes, I.: Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities. New J. Phys. 15, 073052 (2013). doi: 10.1088/1367-2630/15/7/073052. arXiv:1210.6772
  11. 11.
    Casals, M., Dolan, S.R., Nolan, B.C., Ottewill, A.C., Winstanley, E.: Quantization of fermions on Kerr space-time. Phys. Rev. D 87, 064027 (2013). doi: 10.1103/PhysRevD.87.064027. arXiv:1207.7089
  12. 12.
    Chen, L.Q.: Causal loop in the theory of relative locality. Phys. Rev. D 88, 024052 (2013). doi: 10.1103/PhysRevD.88.024052. arXiv:1212.5233
  13. 13.
    Chen, L.Q.: Orientability of Loop Processes in Relative Locality (2013). arXiv:1308.0318
  14. 14.
    Collini, G., Moretti, V., Pinamonti, N.: Tunnelling black-hole radiation with \(\phi ^3\) self-interaction: one-loop computation for Rindler Killing horizons. Accepted for publication in Lett. Math. Phys. (2013). arXiv:1302.525
  15. 15.
    de Medeiros, P., Hollands, S.: Superconformal quantum field theory in curved spacetime. Class. Quantum Gravity 30(17), 175015 (2013). doi: 10.1088/0264-9381/30/17/175015. arXiv:1305.0499
  16. 16.
    Degueldre, H., Woodard, R.: One loop field strengths of charges and dipoles on a locally de Sitter background. Eur. Phys. J. C 73, 2457 (2013). doi: 10.1140/epjc/s10052-013-2457-z. arXiv:1303.3042
  17. 17.
    Fewster, C.J., Ford, L., Roman, T.A.: Probability distributions of smeared quantum stress tensors. Phys. Rev. D 81, 121901 (2010). doi: 10.1103/PhysRevD.81.121901. arXiv:1004.0179
  18. 18.
    Fewster, C.J., Ford, L., Roman, T.A.: Probability distributions for quantum stress tensors in four dimensions. Phys. Rev. D 85, 125038 (2012). doi: 10.1103/PhysRevD.85.125038. arXiv:1204.3570
  19. 19.
    Finelli, F., Marozzi, G., Vacca, G., Venturi, G.: Backreaction during inflation: a physical gauge invariant formulation. Phys. Rev. Lett. 106, 121304 (2011). doi: 10.1103/PhysRevLett.106.121304. arXiv:1101.1051 Google Scholar
  20. 20.
    Ford, L., Roman, T.: Negative energy seen by accelerating observers. Phys. Rev. D 87, 085001 (2013). arXiv:1302.2859
  21. 21.
    Friis, N., Lee, A.R., Louko, J.: Scalar, spinor, and photon fields under relativistic cavity motion. Phys. Rev. D 88, 064028 (2013). doi: 10.1103/PhysRevD.88.064028. arXiv:1307.1631
  22. 22.
    Good, M.R.R., Anderson, P.R., Evans, C.R.: Time dependence of particle creation from accelerating mirrors. Phys. Rev. D 88, 025023 (2013). doi: 10.1103/PhysRevD.88.025023. arXiv:1303.6756
  23. 23.
    Gralla, S.E., Le Tiec, A.: Thermodynamics of a black hole with moon. Phys. Rev. D 88, 044021 (2013). doi: 10.1103/PhysRevD.88.044021. arXiv:1210.8444
  24. 24.
    Groh, K., Krasnov, K., Steinwachs, C.F.: Pure connection gravity at one loop: instanton background. JHEP 2013, 187 (2013). doi: 10.1007/JHEP07(2013)187. arXiv:1304.6946
  25. 25.
    Haggard, H.M., Rovelli, C.: Death and Resurrection of the Zeroth Principle of Thermodynamics (2013). arXiv:1302.0724
  26. 26.
    Helliwell, T., Konkowski, D.: Quantum singularities in spherically symmetric, conformally static spacetimes. Phys. Rev. D 87, 104041 (2013). doi: 10.1103/PhysRevD.87.104041. arXiv:1302.3970
  27. 27.
    Horowitz, G.T., Marolf, D.: Quantum probes of spacetime singularities. Phys. Rev. D 52, 5670–5675 (1995). doi: 10.1103/PhysRevD.52.5670. arXiv:gr-qc/9504028 Google Scholar
  28. 28.
    Hossenfelder, S.: Comment on arXiv:1104.2019, ‘Relative locality and the soccer ball problem’, by Amelino-Camelia et al. Phys. Rev. D 88, 028,701 (2013). doi: 10.1103/PhysRevD.88.028701. arXiv:1202.4066.
  29. 29.
    Jacobson, T.: Note on Hartle–Hawking vacua. Phys. Rev. D (3) 50(10), R6031–R6032 (1994). doi: 10.1103/PhysRevD.50.R6031.
  30. 30.
    Jacobson, T.: Thermodynamics of space-time: the Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995). doi: 10.1103/PhysRevLett.75.1260. arXiv:gr-qc/9504004 Google Scholar
  31. 31.
    Kalinichenko, I.S., Kazinski, P.O.: High-temperature expansion of the one-loop free energy of a scalar field on a curved background. Phys. Rev. D 87(8), 084036 (2013). doi: 10.1103/PhysRevD.87.084036. arXiv:1301.5103 Google Scholar
  32. 32.
    Kiefer, C., Krämer, M.: Quantum gravitational contributions to the cosmic microwave background anisotropy spectrum. Phys. Rev. Lett. 108, 021301 (2012). doi: 10.1103/PhysRevLett.108.021301. arXiv:1103.4967
  33. 33.
    Kong, L., Malafarina, D., Bambi, C.: Can we observationally test the weak cosmic censorship conjecture? (2013). arXiv:1310.8376
  34. 34.
    Konkowski, D., Helliwell, T.: Quantum singularities in static and conformally static space-times. Int. J. Mod. Phys. A 26, 3878–3888 (2011). doi: 10.1142/S2010194511001462. doi: 10.1142/S0217751X11054334 Google Scholar
  35. 35.
    Marin, F., Marino, F., Bonaldi, M., Cerdonio, M., Conti, L., Falferi, P., Mezzena, R., Ortolan, A., Prodi, G.A., Taffarello, L., Vedovato, G., Vinante, A., Zendri, J.P.: Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nat. Phys. 9, 71–73 (2013). doi: 10.1038/nphys2503 CrossRefGoogle Scholar
  36. 36.
    Marolf, D., Morrison, I.A.: The IR stability of de Sitter QFT: results at all orders. Phys. Rev. D 84, 044040 (2011). doi: 10.1103/PhysRevD.84.044040. arXiv:1010.5327
  37. 37.
    Marolf, D., Morrison, I.A., Srednicki, M.: Perturbative S-matrix for massive scalar fields in global de Sitter space. Class. Quantum Gravity 30, 155023 (2013). doi: 10.1088/0264-9381/30/15/155023. arXiv:1209.6039
  38. 38.
    Marozzi, G., Vacca, G.P., Brandenberger, R.H.: Cosmological backreaction for a test field observer in a chaotic inflationary model. JCAP 1302, 027 (2013). doi: 10.1088/1475-7516/2013/02/027. arXiv:1212.6029
  39. 39.
    Moretti, V., Pinamonti, N.: State independence for tunnelling processes through black hole horizons and hawking radiation. Commun. Math. Phys. 309, 295–311 (2012). doi: 10.1007/s00220-011-1369-8. arXiv:1011.2994
  40. 40.
    Oliveira, E.S., Crispino, L.C., Higuchi, A.: Equality between gravitational and electromagnetic absorption cross sections of extreme Reissner–Nordström black holes. Phys. Rev. D 84, 084048 (2011). doi: 10.1103/PhysRevD.84.084048
  41. 41.
    Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042–5045 (2000). doi: 10.1103/PhysRevLett.85.5042. arXiv:hep-th/9907001 Google Scholar
  42. 42.
    Pinamonti, N., Siemssen, D.: Scale-Invariant Curvature Fluctuations from an Extended Semiclassical Gravity (2013). arXiv:1303.3241
  43. 43.
    Prokopec, T., Tornkvist, O., Woodard, R.: One loop vacuum polarization in a locally de Sitter background. Ann. Phys. 303, 251–274 (2003). doi: 10.1016/S0003-4916(03)00004-6. arXiv:gr-qc/0205130 Google Scholar
  44. 44.
    Sanders, K.: On the Construction of Hartle–Hawking–Israel States Across a Static Bifurcate Killing, Horizon (2013). arXiv:1310.5537
  45. 45.
    Sanders, K., Dappiaggi, C., Hack, T.P.: Electromagnetism, Local Covariance, the Aharonov-Bohm Effect and Gauss’ Law (2012). arXiv:1211.6420
  46. 46.
    Sewell, G.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141(2), 201–224 (1982). doi: 10.1016/0003-4916(82)90285-8 Google Scholar
  47. 47.
    Smerlak, M.: The two faces of Hawking radiation. Int. J. Mod. Phys. D 22(12), 1342019 (2013). doi: 10.1142/S0218271813420194. arXiv:1307.2227 Google Scholar
  48. 48.
    Smerlak, M., Singh, S.: New Perspectives on Hawking Radiation (2013). arXiv:1304.2858
  49. 49.
    Unruh, W.: Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351–1353 (1981). doi: 10.1103/PhysRevLett.46.1351 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of YorkHeslington, YorkUK
  2. 2.SISSA/ISASTriesteItaly
  3. 3.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations