Skip to main content
Log in

Generalized holographic equipartition for Friedmann–Robertson–Walker universes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The novel idea that spatial expansion of our universe can be regarded as the consequence of the emergence of space was proposed by Padmanabhan. By using of the basic law governing the emergence, which Padmanabhan called holographic equipartition, he also arrives at the Friedmann equation in a flat universe. When generalized to other gravity theories, the holographic equipartition need to be generalized with an expression of \(f(\Delta N,N_{sur})\). In this paper, we give general expressions of \(f(\Delta N,N_{sur})\) for generalized holographic equipartition which can be used to derive the Friedmann equations of the Friedmann–Robertson–Walker universe with any spatial curvature in higher (\(\hbox {n}+1\))-dimensional Einstein gravity, Gauss–Bonnet gravity and more general Lovelock gravity. The results support the viability of the perspective of holographic equipartition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bousso, R.: Rev. Modern Phys. 74, 825 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Maldacena, J.: Int. J. Theor. Phys. 38, 1113 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Witten, E.: arXiv preprint hep-th/9802150 (1998)

  6. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Verlinde, E.: J. High Energy Phys. 2011, 1 (2011)

    Article  Google Scholar 

  8. Padmanabhan, T.: Modern Phys. Lett. A 25, 1129 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Padmanabhan, T.: Rep. Progr. Phys. 73, 046901 (2010)

    Article  ADS  Google Scholar 

  10. Padmanabhan, T.: In: Journal of Physics: Conference Series, Vol. 306 (IOP Publishing), p. 012001 (2011)

  11. Padmanabhan, T.: arXiv preprint arXiv:1206.4916 (2012)

  12. Cai, R.-G.: J. High Energy Phys. 11, 016 (2012)

    Article  ADS  Google Scholar 

  13. Yang, K., Liu, Y.-X., Wang, Y.-Q.: Phys. Rev. D 86, 104013 (2012)

    Article  ADS  Google Scholar 

  14. Sheykhi, A.: Phys. Rev. D 87, 061501 (2013)

    Article  ADS  Google Scholar 

  15. Tu, F.-Q., Chen, Y.-X.: J. Cosmol. Astropart. Phys. 2013, 024 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ai, W.-Y., Hu, X.-R., Chen, H., Deng, J.-B.: Phys. Rev. D 88, 084019 (2013)

    Article  ADS  Google Scholar 

  17. Cai, R.-G., Cao, L.-M., Ohta, N.: Phys. Rev. D 81, 061501 (2010)

    Article  ADS  Google Scholar 

  18. Cai, R.-G., Kim, S.P.: J. High Energy Phys. 2005, 050 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Bo Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, WY., Chen, H., Hu, XR. et al. Generalized holographic equipartition for Friedmann–Robertson–Walker universes. Gen Relativ Gravit 46, 1680 (2014). https://doi.org/10.1007/s10714-014-1680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1680-8

Keywords

Navigation