Skip to main content
Log in

The energy level shift of one-electron atom in Anti-(de Sitter) space time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the present study we consider the Hamiltonian of the Dirac equation in curved space in fermi normal coordinates to first order in the Riemann tensor, including the corrections to the electromagnetic field. Then the energy level shifts by the local curvature for both relativistic and nonrelativistic levels in (Anti-)de Sitter space-time are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de A. Marques, G., Fernandes, S.G., Bezerra, V.B.: Some effects on relativistic quantum systems due to a weak gravitational field. Brazilian J. Phys. 35(4B), 1110–1112 (2005)

  2. Parker, L., Pimentel, L.O.: Gravitational perturbation of the hydrogen spectrum. Phys. Rev. D 25(12), 3180 (1982)

    Google Scholar 

  3. Pinto, F.: Rydberg atoms in curved spacetime. Phys. Rev. Lett. 70, 3839 (1993)

    Article  ADS  Google Scholar 

  4. Leen, T.K., Parker, L., Pimentel, L.O.: Remote quantum mechanical detection of gravitational radiation. Gen. Relativ. Gravit. 15, 761 (1983)

    Google Scholar 

  5. Gorbatsievich, A.K.: On the one electron atom in an external gravitational field. Acta Physica Polonica B 16, 21 (1985)

    Google Scholar 

  6. Parker, L.: One-electron atom as a probe of spacetime curvature. Phys. Rev. D 22, 1922–1934 (1980)

    Article  ADS  Google Scholar 

  7. Parker, L.: One-electron atom in curved space-time. Phys. Rev. Lett. 44, 1559 (1980)

    Google Scholar 

  8. Huang, X., Parker, L.: Hermiticity of the dirac Hamiltonian in curved space time. Phys. Rev. D 79, 024020 (2009). arXiv:0811.2296v1 [hep-th]

  9. Manasse, F.K., Misner, C.W.: Fermi normal coordinates and some basic concepts in differential geometry. J. Math. Phys. 4, 735 (1963)

    Google Scholar 

  10. Zhao, Z.-H., Liu, Y.-Z., Li, X.-G.: Gravitational corrections to energy-levels of a hydrogen atom. Commun. Theor. Phys. 47, 658 (2007)

    Google Scholar 

  11. Strange, P.: Relativistic Quantum Mechanics. Cambridge University Press, Cambridge, MA (1998)

    Book  Google Scholar 

  12. Rose, M.E.: Relativistic Electron Theory. Wiley, New York (1961)

    MATH  Google Scholar 

  13. Martin, J.: Everything you always wanted to know about the cosmological constant problem, [v1] Tue, (15 May 2012) 13:36:21 GMT. arXiv:1205.3365 [astro-ph.CO]

  14. Klein, D., Lichten, P.C.: Exact fermi normal coordinate for a class of spacetime. J. Math. Phys. 51, 022501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  15. Moradi, S., Aboualizadeh, E.: Hydrogen atom and its energy level shifts in de Sitter universe. Gen. Relativ. Gravit. 42, 435442 (2010). doi:10.1007/s10714-009-0866-y

  16. Padmanabhan, T.: Cosmic Ray Conference Proceedings (ICRC 2005), vol. 47 (2005)

  17. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Pearson Addison, Wesley (2003). [QC173.6.C377 2004]

Download references

Acknowledgments

I would like to express special thanks to M. Reza Tanhayi for his useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Mirabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabi, S. The energy level shift of one-electron atom in Anti-(de Sitter) space time. Gen Relativ Gravit 45, 2671–2682 (2013). https://doi.org/10.1007/s10714-013-1610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1610-1

Keywords

Navigation