Skip to main content
Log in

Conformally invariant thermodynamics of a Maxwell-Dilaton black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The thermodynamics of Maxwell-Dilaton black holes has been extensively studied. It has served as a fertile ground to test ideas about temperature through various definitions of surface gravity. In this paper, we make an independent analysis of this black hole solution in both, Einstein and Jordan, frames. We explore a set of definitions for the surface gravity and observe the different predictions they make for the near extremal configuration of this black hole. Finally, motivated by the singularity structure in the interior of the event horizon, we use a holographic argument to remove the micro-states from the disconnected region of this solution. In this manner, we construct a frame independent entropy from which we obtain a temperature which agrees with the standard results in the non-extremal regime, and has a desirable behaviour around the extremal configurations according to the third law of black hole mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 15, 2752 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  4. Cai, R.G., Myung, Y.S.: Nucl. Phys. B 495, 339 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Garfinkle, D., Horowitz, G.T., Strominger, A.: Phys. Rev. D 43, 3140 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  6. Marques, G.T., Rodrigues, M.E.: Eur. Phys. J. C 72, article id. #1891 02/2012

  7. Hayward, S.A., Criscienzo, R.D., Nadalini, M., Vanzo, L., Zerbini, S.: Class. Quantum Grav. 26, 062001 (2009)

    Article  ADS  Google Scholar 

  8. Pielanh, M., Kunstatter, G., Nielsen, A.B.: Phys. Rev. D 84, 104008 (2011)

    Article  ADS  Google Scholar 

  9. Macias, A., Garcia, A.: Gen. Relativ. Gravit. 33, 889 (2001). doi:10.1023/A:1010212025682

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Gibbons, G.W.: Nucl. Phys. B 207, 337 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  11. Gibbons, G.W., Ichi Maeda, K.: Nucl. Phys. B 298, 741 (1988)

    Article  ADS  Google Scholar 

  12. Garfinkle, D., Horowitz, G.T., Strominger, A.: Phys. Rev. D 45, 3888 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  13. Wald, R.M.: General Relativity. Chicago University Press, UK (1984)

    Book  MATH  Google Scholar 

  14. Visser, M.: Phys. Rev. D 46, 2445 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. Jacobson, T., Kang, G., Myers, R.: Phys. Rev. D 49, 6587 966598 (1994)

    Google Scholar 

  16. Nielsen, A.B., Yoon, J.H.: Class. Quantum Grav. 25, 085010 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Felice, F.D., Clarke, C.J.S.: Relativity on Curved Manifolds. Cambridge University Press, UK (1990)

    MATH  Google Scholar 

  18. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Uk (1973)

    Book  MATH  Google Scholar 

  19. Wald, R.: Phys. Rev. D 48, R3427 96R3431 (1993)

  20. Visser, M.: Phys. Rev. D 48, 5697 965705 (1993)

    Google Scholar 

  21. Lopez-Monsalvo, C.S., Nettel, F., S’anchez, A.: Braz. J. Phys. 42, 1 (2012)

    Article  Google Scholar 

  22. Nielsen, A., Firouzjaee, J.: arXiv:1207.0064

  23. Davies, P.C.W.: Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Sci. 353(1675), 499 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

FN receives support from DGAPA-UNAM (postdoctoral fellowship). CSLM would like to thank the Wigner Institute for their kind hospitality during the writing of this manuscript and to CONACYT Grant No. 290679_UNAM. This work was supported by CONACYT project No. 166391 and DGAPA-UNAM No. IN106110. The authors are thankful to the anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Lopez-Monsalvo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Monsalvo, C.S., Nettel, F. & Quevedo, H. Conformally invariant thermodynamics of a Maxwell-Dilaton black hole. Gen Relativ Gravit 45, 2553–2568 (2013). https://doi.org/10.1007/s10714-013-1604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1604-z

Keywords

Navigation