Skip to main content
Log in

Can smooth LTB models mimicking the cosmological constant for the luminosity distance also satisfy the age constraint?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The central smoothness of the functions defining a LTB solution plays a crucial role in their ability to mimic the effects of the cosmological constant. Even if non-smoothness is not physically inconsistent with the theory of general relativity, smoothness is still an important geometrical property characterizing the solution of the Einstein’s equations. So far attention has been focused on \(C^{1}\) models while in this paper we approach it in a more general way, investigating the implications of higher order central smoothness conditions for LTB models reproducing the luminosity distance of a \(\Lambda CDM\) Universe. Our analysis is based on a low red-shift expansion, and extends previous investigations by including also the constraint coming from the age of the Universe and re-expressing the equations for the solution of the inversion problem in a manifestly dimensionless form which makes evident the freedom to accommodate any value of \(H_0\) as well. Higher order smoothness conditions strongly limit the number of possible solutions respect to the first order condition. Neither a \(C^{1}\) or a \(C^{i}\) LTB model can both satisfy the age constraint and mimic the cosmological constant for the luminosity distance. This implies that it is not necessary to include any additional observable to distinguish mathematically the theoretical predictions of a smooth LTB model from a \(\Lambda CDM\). One difference is in the case in which the age constraint is not included and the bang function is zero, in which there is a unique solution for \(C^1\) models but no solution for the \(C^{i}\) case. Another difference is in the case in which the age constraint is not included and the bang function is not zero, in which the solution is undetermined for both \(C^1\) and \(C^{i}\) models, but the latter ones have much less residual parametric freedom. Our results imply that any LTB model able to fit luminosity distance data and satisfy the age constraint is either not mimicking exactly the \(\Lambda CDM\) red-shift space theoretical predictions or it is not smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Supernova cosmology project. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

  2. Riess, A.G., et al.: Supernova search team. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

  3. Tonry, J.L., et al.: Supernova search team. Astrophys. J. 594, 1 (2003). arXiv:astro-ph/0305008

  4. Knop, R.A., et al.: Supernova cosmology project. Astrophys. J. 598, 102 (2003). arXiv:astro-ph/0309368

  5. Barris, B.J., et al.: Astrophys. J 602, 571 (2004). arXiv:astro-ph/0310843

  6. Riess, A.G., et al.: Supernova Search Team. Astrophys. J. 607, 665 (2004). arXiv:astro-ph/0402512

  7. Bennett, C., et al.: WMAP collaboration. Astrophys. J. Suppl. 148, 1 (2003). arXiv:astro-ph/0302207

    Google Scholar 

  8. Spergel, D., et al.: WMAP collaboration. Astrophys. J. Suppl. 170, 377 (2007). arXiv:astro-ph/0603449

    Google Scholar 

  9. Nambu, Y., Tanimoto, M. (2005) arXiv:gr-qc/0507057

  10. Kai, T., Kozaki, H., Nakao, K., Nambu, Y., Yoo, C.M.: Prog. Theor. Phys. 117, 229 (2007). arXiv:gr-qc/0605120

    Google Scholar 

  11. Romano, A.E.: Phys. Rev. D 75, 043509 (2007). arXiv:astro-ph/0612002

  12. Chung, D.J., Romano, A.E.: Phys. Rev. D 74, 103507 (2006). arXiv:astro-ph/0608403

  13. Yoo, C.-M., Kai, T., Nakao, K.: Prog. Theor. Phys. 120, 937 (2008). arXiv:0807.0932

    Google Scholar 

  14. Alexander, S., Biswas, T., Notari, A., Vaid, D.: JCAP 0909, 025 (2009). arXiv:0712.0370

  15. Alnes, H., Amarzguioui, M., Gron, O.: Phys. Rev. D 73, 083519 (2006). arXiv:astro-ph/0512006

  16. Garcia-Bellido, J., Haugboelle, T.: JCAP 0804, 003 (2008). arXiv:0802.1523

  17. Garcia-Bellido, J., Haugboelle, T.: JCAP 0809, 016 (2008). arXiv:0807.1326

  18. Garcia-Bellido, J., Haugboelle, T.: JCAP 0909, 028 (2009). arXiv:0810.4939

  19. February, S., Larena, J., Smith, M., Clarkson, C.: Mon. Not. R. Astron. Soc. 405, 2231 (2010). arXiv:0909.1479

  20. Uzan, J.-P., Clarkson, C., Ellis, G.F.: Phys. Rev. Lett. 100, 191303 (2008). arXiv:0801.0068

    Google Scholar 

  21. Clarkson, C., Cortes, M., Bassett, B.A.: JCAP 0708, 011 (2007). arXiv:astro-ph/0702670

  22. Zuntz, J., Zibin, J.P., Zunckel, C., Zwart, J. (2011). arXiv:1103.6262

  23. Ishibashi, A., Wald, R.M.: Class. Quantum Gravit. 23, 235 (2006). arXiv:gr-qc/0509108

  24. Bolejko, K., Hellaby, C., Alfedeel, A.H.: JCAP 1109, 011 (2011). arXiv:1102.3370

  25. Romano, A.E., Sasaki, M.: Gen. Rel. Grav. 44, 353 (2012) arXiv:0905.3342

  26. Romano, A.E.: Phys. Rev. D76, 103525 (2007) arXiv:astro-ph/0702229

  27. Romano, A.E.: Gen. Rel. Grav. 45, 1515 (2013) arXiv:1206.6164

  28. Romano, A.E.: JCAP 1001, 004 (2010) arXiv:0911.2927

  29. Zibin, J.P., Moss, A.: Class. Quantum Gravit. 28, 164005 (2011). arXiv:1105.0909

  30. Zhang, P., Stebbins, A.: Phys. Rev. Lett. 107, 41301 (2011). arXiv:1009.3967

    Google Scholar 

  31. Zibin, J.P.: Phys. Rev. D 84, 123508 (2011). arXiv:1108.3068

  32. Bull, P., Clifton, T., Ferreira, P.G.: Phys. Rev. D 85, 024002 (2012). arXiv:1108.2222

  33. Krasinski, A., Hellaby, C., Bolejko, K., Celerier, M.-N.: Gen. Relativ. Gravit. 42, 2453 (2010). arXiv:0903.4070

    Google Scholar 

  34. Clifton, T., Ferreira, P.G., Land, K.: Phys. Rev. Lett. 101, 131302 (2008). arXiv:0807.1443

    Google Scholar 

  35. Romano, A.E.: Phys. Rev. D 82, 123528 (2010). arXiv:0912.4108

  36. Romano, A.E.: JCAP 1005, 020 (2010). arXiv:0912.2866

  37. Biswas, T., Notari, A., Valkenburg, W.: JCAP 1011, 030 (2010). arXiv:1007.3065

  38. Moss, A., Zibin, J.P., Scott, D.: Phys. Rev. D 83, 103515 (2011). arXiv:1007.3725

  39. Marra, V., Notari, A.: Class. Quantum Gravit. 28, 164004 (2011). arXiv:1102.1015

  40. Riess, A.G., et al.: Astrophys. J. 730, 119 (2011). arXiv:1103.2976

  41. Enea Romano, A. (2011) arXiv:1112.1777

  42. Lemaitre, G.: Gen. Relativ. Gravit. 29, 641 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  43. Tolman, R.C.: Proc. Natl. Acad. Sci 20, 169 (1934)

    Article  ADS  Google Scholar 

  44. Bondi, H.: Mon. Not. R. Astron. Soc. 107, 410 (1947)

    MathSciNet  ADS  MATH  Google Scholar 

  45. Zibin, J., Moss, A., Scott, D.: Phys. Rev. Lett. 101, 251303 (2008). arXiv:0809.3761

    Google Scholar 

  46. Vanderveld, R.A., Flanagan, E.E., Wasserman, I.: Phys. Rev. D 74, 023506 (2006). arXiv:astro-ph/0602476

  47. Alnes, H., Amarzguioui, M.: Phys. Rev. D 75, 023506 (2007). arXiv:astro-ph/0610331

  48. Romano, A.E., Sasaki, M., Starobinsky, A.A.: Eur. Phys. J. C 72, 2242 (2012). arXiv:1006.4735

    Google Scholar 

  49. Romano, A.E., Chen, P.: JCAP 1110, 016 (2011). arXiv:1104.0730

  50. Romano, A.E., Chen, P. (2012) arXiv:1207.5572

  51. Romano, A.E., Chen, P.: Int. J. Mod. Phys. D 20, 2823 (2011). arXiv:1208.3911

Download references

Acknowledgments

I thank the members of the Dark energy LeCosPa working group, Misao Sasaki and Marco Regis for comments and discussions. I also thank the CERN theoretical division for its support and hospitality. A.E.R. is also supported by the CODI project IN615CE and Sostenibilidad 2013/2014 of UDEA, and the dedicacion exclusiva program of the Vicerectoria de Docencia of UDEA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Enea Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, A.E. Can smooth LTB models mimicking the cosmological constant for the luminosity distance also satisfy the age constraint?. Gen Relativ Gravit 45, 2529–2544 (2013). https://doi.org/10.1007/s10714-013-1602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1602-1

Keywords

Navigation