Advertisement

General Relativity and Gravitation

, Volume 45, Issue 9, pp 1723–1731 | Cite as

Constraints on Kaluza–Klein gravity from Gravity Probe B

  • J. M. OverduinEmail author
  • R. D. Everett
  • P. S. Wesson
Research Article

Abstract

Using measurements of geodetic precession from Gravity Probe B, we constrain possible departures from Einstein’s General Relativity for a spinning test body in Kaluza–Klein gravity with one additional space dimension. We consider the two known static and spherically symmetric solutions of the 5D field equations (the soliton and canonical metrics) and obtain new limits on the free parameters associated with each. The theory is consistent with observation but must be “close to 4D” in both cases.

Keywords

Higher-dimensional gravity Experimental tests of gravitational theories 

Notes

Acknowledgments

J. M. O. thanks C. W. F. Everitt, R. J. Adler, A. Silbergleit and the other members of the Gravity Probe B theory group for discussions. R. D. E. acknowledges the Fisher College of Science and Mathematics at Towson University for travel support to present these results.

References

  1. 1.
    Overduin, J.M., Wesson, P.S.: Kaluza–Klein gravity. Phys. Rep. 283, 303–378 (1997). http://arxiv.org/abs/grqc/9805018 Google Scholar
  2. 2.
    Wesson, P.S.: Five-Dimensional Physics. World Scientific, Singapore (2006)zbMATHGoogle Scholar
  3. 3.
    Bronnikov, K.A., Melnikov, V.N.: The Birkhoff theorem in multidimensional gravity. Gen. Relativ. Gravit. 27, 465–474 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Keresztes, Z., Gergely, L.A.: On the validity of the five-dimensional Birkhoff theorem: the tale of an exceptional case. Class. Quantum Gravit. 25, 165016 (2008)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Schmidt, H.-J.: The tetralogy of Birkhoff theorems. Gen. Relativ. Gravit. (2013, in press). http://arxiv.org/abs/1208.5237
  6. 6.
    Sorkin, R.: Kaluza–Klein monopole. Phys. Rev. Lett. 51, 87–90 (1983)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Gross, D.J., Perry, M.J.: Magnetic monopoles in Kaluza–Klein theories. Nucl. Phys. B 226, 29–48 (1983)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Davidson, A., Owen, D.A.: Black holes as windows to extra dimensions. Phys. Lett. B 155, 247–250 (1985)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Mashhoon, B., Liu, M., Wesson, P.S.: Particle masses and the cosmological constant in Kaluza–Klein theory. Phys. Lett. B 331, 305–312 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Liu, H., Wesson, P.S.: The motion of a spinning object in a higher-dimensional spacetime. Class. Quantum Gravit. 13, 2311–2318 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Mashhoon, B., Wesson, P., Liu, H.: Dynamics in Kaluza–Klein gravity and a fifth force. Gen. Relativ. Gravit. 30, 555–571 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Wesson, P.S.: The physical nature of five-dimensional solitons: a survey (2011, preprint) http://arxiv.org/abs/1104.3244
  13. 13.
    Kalligas, D., Wesson, P.S., Everitt, C.W.F.: The classical tests in Kaluza–Klein gravity. Astrophys. J. 439, 548–557 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Lim, P.H., Overduin, J.M., Wesson, P.S.: Light deflection in Kaluza–Klein gravity. J. Math. Phys. 36, 6907–6914 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Liu, H., Overduin, J.M.: Solar system tests of higher dimensional gravity. Astrophys. J. 538, 386–394 (2000). http://arxiv.org/abs/gr-qc/0003034 Google Scholar
  16. 16.
    Overduin, J.M.: Solar system tests of the equivalence principle and constraints on higher-dimensional gravity. Phys. Rev. D 62, 102001 (2000). http://arxiv.org/abs/gr-qc/0007047
  17. 17.
    Wesson, P.S.: A new dark matter candidate: Kaluza–Klein solitons. Astrophys. J. 420, L49–L52 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    Everitt, C.W.F., et al.: Gravity Probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Everitt, C.W.F.: The Stanford relativity gyroscope experiment (A): history and overview. In: Fairbank, J.D., Deaver, B.S., Everitt, C.W.F., Michelson, P.F. (eds.) Near Zero: New Frontiers of Physics, pp. 587–639. W.H. Freeman, New York (1988)Google Scholar
  20. 20.
    Thorne, K.S.: Gravitomagnetism, jets in quasars, and the Stanford gyroscope experiment. In: Fairbank, J.D., Deaver, B.S., Everitt, C.W.F., Michelson, P.F. (eds.) Near Zero: New Frontiers of Physics, pp. 573–586. W.H. Freeman, New York (1988)Google Scholar
  21. 21.
    Schiff, L.I.: Motion of a gyroscope according to Einstein’s theory of gravitation. Proc. Natl. Acad. Sci. 46, 871–882 (1960)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Adler, R.J., Silbergleit, A.S.: General treatment of orbiting gyroscope precession. Int. J. Theor. Phys. 39, 1291–1316 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Will, C.M.: Covariant calculation of general relativistic effects in an orbiting gyroscope experiment. Phys. Rev. D 67, 062003 (2003)Google Scholar
  24. 24.
    Li, J., et al.: On-orbit performance of Gravity Probe B drag-free translation control and orbit determination. Adv. Space Res. 40, 1–10 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Riess, A.G. et al.: A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys. J. 730, 119 (2011). http://arxiv.org/abs/arXiv:1103.2976
  26. 26.
    Suzuki, N. et al.: The Hubble Space Telescope cluster supernova survey V. Astrophys. J. 746, 85 (2012). http://arxiv.org/abs/arXiv:1105.3470 Google Scholar
  27. 27.
    Hinshaw, G. et al.: Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations. Astrophys. J. Suppl. (2012, in press) http://arxiv.org/abs/1212.5226
  28. 28.
    Overduin, J.M., Wesson, P.S.: Kaluza-Klein cosmology with noncompactified extra dimensions. In: Rainer, M., Schmidt, H.-J. (eds.) Current Topics in Mathematical Cosmology, pp. 293–301. World Scientific, Singapore (1998)Google Scholar
  29. 29.
    Overduin, J.M., Wesson, P.S., Mashhoon, B.: Decaying dark energy in higher-dimensional gravity. Astron. Astrophys. 473, 727–731 (2007). http://arxiv.org/abs/0707.3148 Google Scholar
  30. 30.
    Will, C.M.: Finally, results from Gravity Probe B. Physics 4, 43 (2011). http://physics.aps.org/articles/v4/43
  31. 31.
    Overduin, J., et al.: STEP and fundamental physics. Class. Quantum Gravit. 29, 184012 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Matsuno, K., Ishihara, H.: Geodetic precession in squashed Kaluza-Klein black hole spacetimes. Phys. Rev. D 80, 104037 (2009)Google Scholar
  33. 33.
    Liu, H., Wesson, P.S., de Leon, J.P.: Time-dependent Kaluza-Klein soliton solutions. J. Math. Phys. 34, 4070–4079 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Billyard, A., Wesson, P.S.: Class of exact solutions in 5D gravity and its physical implications. Phys. Rev. D 53, 731–737; erratum. Phys. Rev. D 54, 4189–4189 (1996)Google Scholar
  35. 35.
    Liu, H., Wesson, P.S.: A class of Kaluza-Klein soliton solutions. Phys. Lett. B 381, 420–422 (1996)Google Scholar
  36. 36.
    Liu, H., Wesson, P.S.: The physical properties of charged five-dimensional black holes. Class. Quantum Gravit. 14, 1651–1663 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Overduin, J.M.: Constraints on Lorentz violation from Gravity Probe B. In: Kostelecky, A. (ed.) CPT and Lorentz Symmetry, pp. 199–205. World Scientific, Singapore (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. M. Overduin
    • 1
    Email author
  • R. D. Everett
    • 1
  • P. S. Wesson
    • 2
  1. 1.Department of Physics, Astronomy and GeosciencesTowson UniversityTowsonUSA
  2. 2.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada

Personalised recommendations