Skip to main content

Fermions tunneling from Plebański-Demiański black holes

Abstract

Hawking radiation spectrum via fermions tunneling is investigated through horizon radii of Plebański-Demiański family of black holes. To this end, we determine the tunneling probabilities for outgoing and incoming charged fermion particles and obtain their corresponding Hawking temperatures. The graphical behavior of Hawking temperatures and horizon radii (cosmological and event horizons) is also studied. We find consistent results with those already available in literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Hawking, S.W.: Nature 248, 30 (1974)

    ADS  Article  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    MathSciNet  ADS  Article  Google Scholar 

  3. Hawking, S.W.: Commun. Math. Phys. 46, 206 (1976)

    MathSciNet  ADS  Article  Google Scholar 

  4. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    MathSciNet  ADS  Article  Google Scholar 

  5. Parikh, M.K.: Gen. Relativ. Gravit. 36, 2419 (2004)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  6. Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995)

    ADS  Article  Google Scholar 

  7. Kerner, R., Mann, R.B.: Class. Quantum Grav. 25, 095014 (2008)

  8. Kerner, R., Mann, R.B.: Phys. Lett. B 665, 277 (2008)

    Google Scholar 

  9. Dias, O.J.C., Lemos, J.P.S.: Phys. Rev. D 67, 064001 (2003)

    MathSciNet  ADS  Article  Google Scholar 

  10. Dias, O.J.C., Lemos, J.P.S.: Phys. Rev. D 67, 084018 (2003)

    MathSciNet  ADS  Article  Google Scholar 

  11. Chen, D.Y., Jiang, Q.Q., Zua, X.T.: Phys. Lett. B 665, 106 (2008)

    Google Scholar 

  12. Gillani, U.A., Rehman, M., Saifullah, K.: JCAP 06, 016 (2011)

    ADS  Article  Google Scholar 

  13. Gillani, U.A., Saifullah, K.: Phys. Lett. B 699, 15 (2011)

    MathSciNet  ADS  Article  Google Scholar 

  14. Rehman, M., Saifullah, K.: JCAP 03, 001 (2011)

    ADS  Article  Google Scholar 

  15. Bilal, M., Saifullah, K.: Astrophys. Space Sci. 343, 165 (2013)

    ADS  Article  Google Scholar 

  16. Cotăescu, I.I., Visinescu, M.: Int. J. Mod. Phys. A 16, 1743 (2001)

    ADS  MATH  Article  Google Scholar 

  17. Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006)

    Google Scholar 

  18. Ali, M.H.: Class. Quantum Grav. 24, 5849 (2007)

    ADS  MATH  Article  Google Scholar 

  19. Ali, M.H.: Int. J. Theor. Phys. 47, 2203 (2008)

    MATH  Article  Google Scholar 

  20. Li, Q., Han, Y.-W.: Int. J. Theor. Phys. 47, 3248 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  21. Wang, Q., Yang, S.-Z.: Phys. Scr. 78, 045003 (2008)

    ADS  Article  Google Scholar 

  22. Xiao-Xiong, Z., Qiang, L.: Chin. Phys. B 18, 4716 (2009)

    ADS  Article  Google Scholar 

  23. Sharif, M., Javed, W.: J. Korean Phys. Soc. 57, 217 (2010)

    ADS  Article  Google Scholar 

  24. Sharif, M., Javed, W.: Astrophys. Space Sci. 337, 335 (2012)

    ADS  MATH  Article  Google Scholar 

  25. Sharif, M., Javed, W.: J. Exp. Theor. Phys. 114, 933 (2012)

    ADS  Article  Google Scholar 

  26. Sharif, M., Javed, W.: J. Exp. Theor. Phys. 115, 782 (2012)

    ADS  Article  Google Scholar 

  27. Sharif, M., Javed, W.: Can. J. Phys. 91, 43 (2013)

    Article  Google Scholar 

  28. Sharif, M., Javed, W.: Eur. Phys. J. C 72, 1997 (2012)

    ADS  Article  Google Scholar 

  29. Griffiths, J.B.: Colliding Plane Waves in General Relativity. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  30. Plebański, J.F., Demiański, M.: Ann. Phys. 98, 98 (1976)

    ADS  MATH  Article  Google Scholar 

  31. Griffiths, J.B., Podolský, J.: Int. J. Mod. Phys. D 15, 335 (2006)

    ADS  MATH  Article  Google Scholar 

  32. Podolský, J., Kadlecová, H.: Class. Quantum Grav. 26, 105007 (2009)

    ADS  Article  Google Scholar 

  33. Zeng, X.X., Yang, S.Z.: Gen. Relativ. Gravit. 40, 2107 (2008)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  34. Sekiwa, Y.: Decay of the Cosmological Constant by Hawking Radiation as Quantum Tunneling, arXiv:0802.3266

  35. Davis, T.M., Davies, P.C.W., Lineweaver, C.H.: Class. Quantum Grav. 20, 2753 (2003)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  36. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Phys. Rev. D 59, 064010 (1999)

    MathSciNet  ADS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Higher Education Commission, Islamabad, Pakistan, for its financial support through the Indigenous Ph.D. 5000 Fellowship Program Batch-IV. We also appreciate the referee’s comments and providing a particular reference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharif, M., Javed, W. Fermions tunneling from Plebański-Demiański black holes. Gen Relativ Gravit 45, 1051–1068 (2013). https://doi.org/10.1007/s10714-013-1512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1512-2

Keywords

  • Quantum tunneling
  • NUT solution
  • Hawking radiation