Skip to main content
Log in

Thermodynamics and holography of tachyon cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Recently, we have investigated the dynamics of the universe in tachyon cosmology with non-minimal coupling to matter (Farajollahi et al. in Mod Phys Lett A 26(15):1125–1135, 2011; Phys Lett B 711(3–4)15:225–231,2012; Phys Rev D 83:124042, 2011; JCAP 10:014, 20112011; JCAP 05:017, 2011). In particular, for the interacting holographic dark energy (IHDE), the model is studied in Farajollahi et al. (Astrophys Space Sci 336(2):461–467, 2011). In the current work, a significant observational program has been conducted to unveil the model’s thermodynamic properties. Our result shows that the IHDE version of our model better fits the observational data than \(\Lambda \)CDM model. The first and generalized second thermodynamics laws for the universe enveloped by cosmological apparent and event horizon are revisited. From the results, both first and generalized second laws, constrained by the observational data, are satisfied on cosmological apparent horizon.In addition, the total entropy is verified with the observation only if the horizon of the universe is taken as apparent horizon. Then, due to validity of generalized second law, the current cosmic acceleration is also predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Spergel, D.N., et al.: ApJS 148, 175 (2003)

    Article  ADS  Google Scholar 

  4. Spergel, D.N., et al.: ApJS 170, 377S (2007)

    Article  ADS  Google Scholar 

  5. Tegmark, M., et al.: Phys. Rev. D. 69, 103501 (2004)

    Article  ADS  Google Scholar 

  6. Eisenstein, D.J., et al.: Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  7. Caldwell, R.R., Dave, R., Steinhardt, R.J.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  8. Caldwell, R.R.: Phys. Lett. B. 545, 23 (2002)

    Article  ADS  Google Scholar 

  9. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Phys. Rev. D. 63, 103510 (2001)

    Article  ADS  Google Scholar 

  10. Padmanabhan, T.: Phys. Rev. D. 66, 021301 (2002)

    Article  ADS  Google Scholar 

  11. Sen, A.: Phys. Scripta. T. 117, 70 (2005)

    Article  ADS  Google Scholar 

  12. Feng, B., Wang, X.L., Zhang, X.M.: Phys. Lett. B. 607, 35 (2005)

    Article  ADS  Google Scholar 

  13. Elizadle, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D. 70, 043539 (2004)

    Article  ADS  Google Scholar 

  14. Kamenshchik, A., Moschella, U., Pasquier, V.: Phys. Lett. B. 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  15. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D. 66, 043507 (2002)

    Article  ADS  Google Scholar 

  16. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Phys. Rev. Lett. 82, 4971 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Li, M.: Phys. Lett. B. 603, 1 (2004)

    Article  ADS  Google Scholar 

  18. Wei, H., Cai, R.G.: Phys. Lett. B. 663, 1 (2008)

    Article  ADS  Google Scholar 

  19. Wei, H., Cai, R.G.: Phys. Lett. B. 660, 113 (2008)

    Article  ADS  Google Scholar 

  20. Gao, C., Wu, F., Chen, X., Shen, Y.G.: Phys. Rev. D. 79, 043511 (2009)

    Article  ADS  Google Scholar 

  21. Hsu, S.D.H.: Phys. Lett. B. 594, 13 (2004)

    Article  ADS  Google Scholar 

  22. Huang, Q.G., Li, M.: JCAP 0408, 013 (2004)

    Article  ADS  Google Scholar 

  23. Wang, B., Gong, Y.G., Abdalla, E.: Phys. Rev. D 74, 083520 (2006)

    Google Scholar 

  24. Wang, B., Zang, J., Lin, C.Y., Abdalla, E., Micheletti, S.: Nucl. Phys. B. 778, 69–84 (2007)

    Article  ADS  Google Scholar 

  25. Amendola, L.: Phys. Rev. D. 62, 043511 (2000)

    Article  ADS  Google Scholar 

  26. Sandvik, H., Tegmark, M., Zaldarriaga, M., Waga, I.: Phys. Rev. D. 69, 123524 (2004)

    Article  ADS  Google Scholar 

  27. Mohseni Sadjadi, H., Honardoost, M.: Phys. Lett. B. 647, 231 (2007)

    Article  ADS  Google Scholar 

  28. Wu, Q., Gong, Y., Wang, A., Alcaniz, J.S.: Phys. Lett. B. 659, 34 (2008)

    Article  ADS  Google Scholar 

  29. Brax, P., Bruck, C.V., Mota, D.F., Nunes, N.J., Winther, H.A.: Phys. Rev. D. 82, 083503 (2010)

    Article  ADS  Google Scholar 

  30. Davis, A.C., Schelpe, C.A.O., Shaw, D.J.: Phys. Rev. D. 80, 064016 (2009)

    Article  ADS  Google Scholar 

  31. Ito, Y., Nojiri, S.: Phys. Rev. D. 79, 103008 (2009)

    Article  ADS  Google Scholar 

  32. Huang, W.H.: Phys. Lett. B. 561, 153 (2003)

    Article  ADS  MATH  Google Scholar 

  33. Bagla, J.S., Jassal, H.K., Padmanabhan, T.: Phys. Rev. D. 67, 063504 (2003)

    Article  ADS  Google Scholar 

  34. Setare, M.R.: Phys. Lett. B. 653, 116–121 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Setare, M.R.: JCAP 0701, 023 (2007)

  36. Bardeen, J.M., Carter, B., Hawking, S.W.: Comm. Math. Phys. 31, 161 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Hawking, S.W.: Comm. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  38. Bekenstein, J.D.: Phys. Rev. D. 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  39. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Verlinde, E.: hep-th/0008140

  41. Padmanabhan, T.: Class. Quantum Gravit. 19, 5387 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Cai, R.G., Kim, S.P.: JHEP 02, 050 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  43. Bhattacharya, S., Debnath, U.: Int. J. Theor. Phys. 50, 525–536 (2011)

    Article  MATH  Google Scholar 

  44. Bamba, K., Geng, C.Q., Tsujikawa, S.: Int. J. Mod. Phys. D. 20, 1363–1371 (2011)

    Article  ADS  Google Scholar 

  45. Zhang, Y., Gong, Y.G., Zhu, Z.H.: Int. J. Mod. Phys. D. 20(8), 1505–1519 (2011)

    Article  ADS  Google Scholar 

  46. Bamba, K., Geng, C.Q., Tsujikawa, S.: Phys. Lett. B. 688, 101–109 (2010)

    Article  ADS  Google Scholar 

  47. Chattopadhyay, S., Debnath, U.: Can. J. Phys. 88, 933–938 (2010)

    Article  ADS  Google Scholar 

  48. Mazumder, N., Chakraborty, S.: Gen. Relativ. Gravit. 42, 813–820 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Setare, M.R., Vagenas, E.C.: Phys. Lett. B. 666, 111–115 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  50. Wang, B., Lin, C.Y., Pavon, D., Abdalla, E.: Phys. Lett. B. 662, 1–6 (2008)

    Article  ADS  Google Scholar 

  51. Cao, S., Zhu, Z.H., Liang, N.: Astrono. Astrophys. 529, A61 (2011)

    Article  ADS  Google Scholar 

  52. Farajollahi, H., Ravanpak, A., Farrpoor Fadakar, G.: Mod. Phys. Lett. A. 26(15), 1125–1135 (2011)

    Article  ADS  Google Scholar 

  53. Farajollahi, H., Ravanpak, A., Fadakar, G.F.: Phys. Lett. B. 711, 3–4, 15, 225–231 (2012)

  54. Farajollahi, H., Salehi, A.: Phys. Rev. D. 83, 124042 (2011)

    Article  ADS  Google Scholar 

  55. Farajollahi, H., Salehi, A., Shahabi, A.: JCAP 10, 014 (2011)

    Article  ADS  Google Scholar 

  56. Farajollahi, H., Salehi, A., Tayebi, F., Ravanpak, A.: JCAP 05, 017 (2011)

    Article  ADS  Google Scholar 

  57. Farajollahi, H., Ravanpak, A., Fadakar, G.F.: Astrophys. Space. Sci. 336(2), 461–467 (2011)

    Article  ADS  MATH  Google Scholar 

  58. Wang, Y., Mukherjee, P.: Astrophys. J. 650, 1 (2006)

    Article  ADS  Google Scholar 

  59. Bond, J.R., Efstathiou, G., Tegmark, M.: Mon. Not. R. Astron. Soc. 291, L33 (1997)

    ADS  Google Scholar 

  60. Komatsu, E., et al.: Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  61. Reid, B.A.: Mon. Not. R. Astron. Soc. 404, 60–85 (2010)

    Article  ADS  Google Scholar 

  62. Percival, W.J., et al.: Mon. Not. R. Astron. Soc. 401, 2148–2168 (2010)

    Article  ADS  Google Scholar 

  63. He, J.H., Wang, B., Zhang, P.: Phys. Rev. D. 80, 063530 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by Research Grant Council of University of Guilan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Farajollahi.

Appendix

Appendix

We constrain the parameters including the initial conditions by minimizing the \(\chi ^2\) function given as

$$\begin{aligned}&\chi ^2_{OHD}(c ,b; \Omega _{tac}(0), H(0), \phi (0))\nonumber \\&\qquad =\sum _{i=1}^{14}\frac{[H^{th}(z_i|c ,b; \Omega _{tac}(0), H(0), \phi (0)) - H^{obs}(z_i)]^2}{\sigma _{OHD}^2(z_i)}, \end{aligned}$$
(5.1)

where the sum is over the cosmological dataset. In (5.1), \(H^{th}\) and \(H^{obs}\) are the Hubble parameters obtained from the theoretical model and from observation, respectively. Also, \(\sigma _{OHD}\) is the estimated error of the \(H^{obs}\) where obtained from observation [51].

We add the CMB data in our analysis. Since the CMB shift parameter \(R\) [58, 59], contains the main information of the observations from the CMB, it is used to constrain the theoretical models by minimizing

$$\begin{aligned} \chi ^2_{CMB}=\frac{[R-R_{obs}]^2}{\sigma _R^2}, \end{aligned}$$
(5.2)

where \(R_{obs} = 1.725\pm 0.018\) [60], is given by the WMAP7 data. Its corresponding theoretical value is defined as

$$\begin{aligned} R\equiv \Omega _{m0}^{1/2}\int \limits _0^{z_{CMB}}\frac{dz^{\prime }}{E(z^{\prime })}, \end{aligned}$$
(5.3)

with \(z_{CMB} = 1091.3\).

Moreover, for the BAO data, the BAO distance ratio at \(z = 0.20\) and \(z = 0.35\) from the joint analysis of the 2dF Galaxy Redsihft Survey and SDSS data [6163] is used. The distance ratio, given by

$$\begin{aligned} \frac{D_V(z=0.35)}{D_V(z=0.20)}=1.736\pm 0.065, \end{aligned}$$
(5.4)

is a relatively model independent quantity with \(D_V(z)\) defined as

$$\begin{aligned} D_V(z_{BAO})=\left[\frac{z_{BAO}}{H(z_{BAO})}\left(\int \limits _0^{z_{BAO}}\frac{dz}{H(z)}\right)^2\right]^{1/3}. \end{aligned}$$
(5.5)

So, the constraint from BAO can be obtained by performing the following \(\chi ^2\) statistics

$$\begin{aligned} \chi ^2_{BAO}=\frac{[(D_V(z=0.35)/D_V(z=0.20))-1.736]^2}{0.065^2}\cdot \end{aligned}$$
(5.6)

The constraints from a combination of OHD, BAO and CMB can be obtained by minimizing \(\chi ^2_{OHD}+\chi ^2_{BAO}+\chi ^2_{CMB}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farajollahi, H., Ravanpak, A. & Abolghasemi, M. Thermodynamics and holography of tachyon cosmology. Gen Relativ Gravit 45, 465–476 (2013). https://doi.org/10.1007/s10714-012-1481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1481-x

Keywords

Navigation