Skip to main content
Log in

Weak gravitational field in Finsler–Randers space and Raychaudhuri equation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The linearized form of the metric of a Finsler–Randers space is studied in relation to the equations of motion, the deviation of geodesics and the generalized Raychaudhuri equation are given for a weak gravitational field. This equation is also derived in the framework of a tangent bundle. By using Cartan or Berwald-like connections we get some types “gravito-electromagnetic” curvature. In addition we investigate the conditions under which a definite Lagrangian in a Randers space leads to Einstein field equations under the presence of electromagnetic field. Finally, some applications of the weak field in a generalized Finsler spacetime for gravitational waves are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weber, J.: Detection and generation of gravitational waves. Phys. Rev. 117(1), 306–313 (1960).

    Google Scholar 

  2. Wagoner, R.: Scalar tensor and gravitational waves. Phys. Rev. D 1(12), 3209–3216 (1970).

    Google Scholar 

  3. Thorne, K., Kovacs, S.: The generation of gravitational waves. I. Weak-field sources. Astrophys. J. 200, 245–262 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  4. Farese, Es.: Comparing solar-system, binary-pulsar and gravitational-waves tests of gravity. arxiv: gr-qc/9903058v1 (1999)

  5. Sathyaprakash, B., Shutz, B.: Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12, 2 (2009)

    ADS  Google Scholar 

  6. Stavrinos, P.: Deviations of geodesics and gravitational waves in Finsler space-time. Rev. Bull. Calcutta Math. Soc. 9, 1–12 (2001)

    Google Scholar 

  7. Stavrinos, P.: Gravitational and cosmological considerations based on the Finsler and Lagrange metric structures, nonlinear, analysis. doi:10.1016/j.na.2009.01.182 (2009)

  8. Stavrinos, P.C.: On the linearized field theory of Finsler and Lagrange spaces. Algebras Groups Geom. 17, 351–360 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Balan, V., Stavrinos, P.C.: Weak gravitational fields in generalized metric spaces. Geom. Balkan Press Proc. 6, 27–37 (2001)

    Google Scholar 

  10. Brinzei, N., Siparov, S.: On the possibility of the OMPR effect in the space with Finsler geometry I. p. 41. Hpercomplex Numbers Geom. Phys. 2(8), 41–52 (2007) Tom 4

    Google Scholar 

  11. Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 15, 191 (1941)

    MathSciNet  Google Scholar 

  12. Bao, D., Chern, S.-S., Schen, Z.: An Introduction to Riemannian–Finsler Geometry. Springer, New York (2000)

    Book  Google Scholar 

  13. Stavrinos, P., Kouretsis, A., Stathakopoulos, M.: Friedman-like Robertson–Walker model in generalized metric space-time with weak anisotropy. Gen. Relativ. Gravit. 40, 1403–1425 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. Chang, Z., Li, M.-H., Li, X., Wang, S.: Modified rindler potential in Randers-Finslerian space-time and the convergence V-map of bullet cluster. 1EO657558 arXiv: 11103893 v1 18–10-2011

  15. Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  16. Pfeifer, C., Wohlfarth, M.: arXive: 1104.1079 v1.6 Ap. 2011 Phys. Rev. D. 84044039

  17. Bejancu, A., Farran, H.R.: Geometry of Pseudo-Finsler Submanifolds. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  18. Iorio, L., Corda, C.: Gravitomagnetism and gravitational waves arxiv: 1001,3951V2

  19. Martens, R.: Nonlinear gravito-electromagnetism. Gen. Relativ. Gravit. 40, 1203–1217 (2008)

    Article  ADS  Google Scholar 

  20. Mashoon, B.: Gravitomagnetism: a brief introduction. arXiv: gr-qc/0311030

  21. Bel, L.: C. R. Acad. Sci. 247, 1094 (1958)

    MathSciNet  MATH  Google Scholar 

  22. Bel, L.: Gen. Relativ. Gravit. 32, p. 2047 (2000) [translation of 1962 article]

  23. Matte, A.: Can. J. Math. 5, 1 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  24. Penrose, R.: Ann. Phys. 10, 171 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Pirani, F.: Phys. Rev. 105, 1089 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Tsagas, C.: Gravitational waves and cosmic magnetism. Class. Quantum Grav. 19, 3709–3722 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. Stavrinos, P., Diakogiannis, F.: Finslerian structure of anisotropic gravitational field. Gravit. Cosmol. 10(4), 40, 1–11 (2004)

    Google Scholar 

  28. Vacaru, S., Stavrinos, P., Gabourov, E., Gontsa, D.: Clifford and Riemann–Finsler Structures in Geometrical Mechanics and Gravity. Monograph, Geom Balkan Press, p. 643 (2005)

  29. Vacaru, S.: Super-luminal effects for Finsler branes as a way to preserve the paradigm of relativity theories. arXiv: 1110.0675v! (2011)

  30. Kostelecky, A.: Riemann–Finsler geometry and Lorentz-violeting kinematics. Phys. Lett. B 701, 137–143 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  31. Asanov, G.S.: Finsler Geometry, Relativity and Gauge Theories. Reidel Publishing Company, Dordrecht (1985)

    Book  MATH  Google Scholar 

  32. Yasuda, H., Shimada, H.: On randers space of scalar curvature. Rep. Math. Phys. 11, 347–360 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Asanov, G.S., Stavrinos, P.C.: Finslerian deviations of geodesics over tangent bundle. Rep. Math. Phys. 30(1), 63–69 (1991)

    Google Scholar 

  34. Stavrinos, P.: Tidal forces in vertical spaces of Finslerian space-time. Rep. Math. Phys. 31, 1–4 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Rutz, S.: Symmetry in Finsler spaces. In: Bao, D., Chern, S.-S., Shen, Z. (eds.) Finsler Geometry Research Conference on Finsler Geometry, p. 289. Contemporary Mathematics, Seattle (1995)

  36. Balan, V., Stavrinos, P.: Deviations of geodesics in fibered Finslerian approach. In: Antonelli, P.L., Miron, R. (eds.) Lagrange and Finsler Geometry, pp. 65–74. Kluwer, Dordrecht (1996)

    Google Scholar 

  37. Miron, R., Anastasiei, M.: The Geometry of Lagrange Theory and Applications. Kluwer, Dordrecht (2000)

    Google Scholar 

  38. Raychaudhuri, A.: Relativistic cosmology. Phys. Rev. 98(4), 1123 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  39. Hawking-Ellis, S.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  40. Kouretsis, A., Tsagas, C.: Raychaudhuri’s equation and aspects of relativistic charged collapse. Phys. Rev. D 82, 124053 (2010)

    Article  ADS  Google Scholar 

  41. Claudel, C.M., Virbhadra, K.S., Ellis, G.F.R.: The geometry of photon surfaces. J. Math. Phys. 42(2), 818–838 (2001)

    Google Scholar 

  42. Virbhadra, K.S., Ellis, G.F.R.: Schwarzschild black hole lensing. Phys. Rev. D. 62, 084003–1 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  43. Stavrinos, P.C.: Congruences of fluids in a Finslerian anisotropic space-time. Int. J. Theor. Phys. 44(2), 245–254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the University of Athens (Special Accounts for Research Grants) for the support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Stavrinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavrinos, P.C. Weak gravitational field in Finsler–Randers space and Raychaudhuri equation. Gen Relativ Gravit 44, 3029–3045 (2012). https://doi.org/10.1007/s10714-012-1438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1438-0

Keywords

Navigation