Skip to main content
Log in

Schwarzschild black hole levitating in the hyperextreme Kerr field

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The equilibrium configurations between a Schwarzschild black hole and a hyperextreme Kerr object are shown to be described by a three-parameter subfamily of the extended double-Kerr solution. For this subfamily we provide a physical representation which employs as arbitrary parameters the individual Komar masses and relative coordinate distance between the sources. The calculation of horizon’s local angular velocity induced in the Schwarzschild black hole by the Kerr constituent yields a simple expression inversely proportional to the square of the distance parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Manko, V.S., Ruiz, E.: Exact solution of the double-Kerr equilibrium problem. Class. Quantum Gravity 18, L11–L15 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Ernst, F.J.: New formulation of the axially symmetric gravitational field problem. Phys. Rev. 167, 1175–1178 (1968)

    Article  ADS  Google Scholar 

  3. Manko, V.S., Ruiz, E.: A remark on the mass-angular-momentum relation in the double-Kerr solution. Class. Quantum Gravity 19, 3077–3081 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Komar, A.: Covariant conservation laws in general relativity. Phys. Rev. 113, 934–936 (1959)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Varzugin, G.G.: The interaction force between rotating black holes at equilibrium. Theor. Math. Phys. 116, 1024–1033 (1998), arXiv:0005035[gr-qc]

    Google Scholar 

  6. Kramer, D., Neugebauer, G.: The superposition of two Kerr solutions. Phys. Lett. A 75, 259–261 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bonnor, W.B.: Detection of closed timelike curves. Gen. Relativ. Gravit. 41, 2633–2635 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Dietz, W., Hoenselaers, C.: Two mass solutions of Einstein’s vacuum equations: the double Kerr solution. Ann. Phys. (NY) 165, 319–383 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  9. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Manko, V.S., Ruiz, E., Sanabria-Gómez, J.D.: Extended multi-soliton solutions of the Einstein field equation: II. Two comments on the existence of equilibrium states. Class. Quantum Gravity 17, 3881–3898 (2000)

    Article  MATH  ADS  Google Scholar 

  11. Tomimatsu, A.: On gravitational mass and angular momentum of two black holes in equilibrium. Prog. Theor. Phys. 70, 385–393 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Carter, B.: Black hole equilibrium states. In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes, pp. 57–214. Gordon and Breach, New York (1973)

    Google Scholar 

  13. Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 257–276 (1969); reprinted in Gen. Relativ. Gravit. 34, 1141–1165 (2002)

  14. Shapiro, S., Teukolsky, S.: Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects. Wiley-Interscience, New York (1983)

    Book  Google Scholar 

  15. Emparan, R., Reall, H.S.: A rotating black ring solution in five dimensions. Phys. Rev. Lett. 88, 101101 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  16. Emparan, R., Reall, H.S.: Black holes in higher dimensions. Living Rev. Relativ. 11, 6 (2008)

    ADS  Google Scholar 

  17. Elvang, H., Figueras, P.: Black saturn. J. High Energy Phys. 5, 050 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. Tomizawa, Sh, Iguchi, H., Mishima, T.: Relationship between solitonic solutions of five-dimensional Einstein equations. Phys. Rev. D 74, 104004 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor M.A. Shamsutdinov for a useful suggestion, and to Professor W.G. Unruh for valuable remarks on an earlier version of the paper, especially for suggesting an application involving the Earth’s gravity. This work was partially supported by CONACyT, Mexico, and by MCyT of Spain under the Project FIS2009-07238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Manko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manko, V.S., Ruiz, E. Schwarzschild black hole levitating in the hyperextreme Kerr field. Gen Relativ Gravit 44, 2891–2899 (2012). https://doi.org/10.1007/s10714-012-1429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1429-1

Keywords

Navigation