Skip to main content
Log in

Periodicity and area spectrum of the three dimensional BTZ black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Very recently, a new scheme to quantize the horizon area of a black hole has been proposed by Zeng and Liu et al. In this paper, we further apply the analysis to investigate area spectrum of three dimensional BTZ black hole with the cosmological constant \({\Lambda=-1/l^{2}}\) . The results show that the area spectrum and entropy spectrum are independent of the cosmological constant. The area spectrum of the black hole is \({\Delta A=8\pi l_{P}^{2}}\) , which confirms the initial proposal of Bekenstein that the area spectrum is independent of the black hole parameters and the spacing is \({8\pi l_{P}^{2}}\) . This result also confirms the speculation of Maggiore that the periodicity of a black hole may be the origin of the area quantization. In addition, for the rotating and non-rotating BTZ black holes, we obtain the same entropy spectrum \({\triangle S=2\pi}\) , which is consistent with the result for other black holes. This implies that the entropy spectrum is more fundamental than the area spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hod S.: Phys. Rev. Lett. 81, 4293 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Hod S.: Gen. Relativ. Gravit. 31, 1639 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Kunstatter G.: Phys. Rev. Lett. 90, 161301 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  4. Maggiore M.: Phys. Rev. Lett. 100, 141301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Setare M.R., Vagenas E.C.: Mod. Phys. Lett. A 20, 1923 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Barvinsky A., Kunstatter G.: Phys. Lett. B 389, 231 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  7. Medved A.J.M.: Mod. Phys. Lett. A 24, 2601 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Ropotenko K.: Phys. Rev. D 80, 044022 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Banerjee R., Majhi B.R., Vagenas E.C.: Phys. Lett. B 686, 279 (2010)

    Article  ADS  Google Scholar 

  10. Majhi B.R., Vagenas E.C.: Phys. Lett. B 701, 623 (2011)

    Article  ADS  Google Scholar 

  11. Kwon Y., Nam S.: Class. Quantum Grav. 27, 125007 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Wei S.W., Li R., Liu Y.X., Ren J.R.: J. High Energy Phys. 0903, 076 (2009)

    MathSciNet  Google Scholar 

  13. Vagenas E.C.: J. High Energy Phys. 0811, 073 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Khriplovich I.B., Ruban G.Y.: Int. J. Mod. Phys. D 15, 879 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Fernando S.: Phys. Rev. D 79, 124026 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Kothawala D., Padmanabhan T., Sarkar S.: Phys. Rev. D 78, 104018 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Lopez-Ortega A.: Phys. Lett. B 682, 85 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. Gonzalez P., Papantonopoulos E., Saavedra J.: J. High Energy Phys. 1008, 050 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. Bekenstein J.D.: Lett. Nuovo Cim. 11, 467 (1974)

    Article  ADS  Google Scholar 

  20. Bekenstein J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  21. Zeng X.X., Liu X.M., Liu W.B.: Eur. Phys. J. C 72, 1967 (2012)

    Article  ADS  Google Scholar 

  22. Banados M., Teitelboim C., Zanelli J.: Phys. Rev. Lett. 69, 1849 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Sfetsos K., Skenderis K.: Nucl. Phys. B 517, 179 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Mann R.B., Solodukhin S.N.: Phys. Rev. D 55, 3622 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  25. Ghosh A., Mitra P.: Phys. Rev. D 56, 3568 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  26. Bytsenko A.A., Vanzo L., Zerbini S.: Phys. Rev. D 57, 4917 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  27. Nojiri S., Odintsov S.D.: Phys. Rev. D 59, 044003 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  28. Medved A.J.M., Kunstatter G.: Phys. Rev. D 63, 104005 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  29. Carlip S.: Class. Quantum Grav. 12, 2853 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Wu S.Q., Jiang Q.Q.: J. High Energy Phys. 0603, 079 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  31. Setare M.R.: Class. Quantum Grav. 21, 1453 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Wei, S., Liu, Y.: arXiv: 0906.0908 (2009)

  33. Zeng X.X., Liu W.B.: Eur. Phys. J. C 72, 1987 (2012)

    Article  ADS  Google Scholar 

  34. Li W., Xu L., Lu J.: Phys. Lett. B 676, 177 (2010)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HL., Lin, R. & Cheng, LY. Periodicity and area spectrum of the three dimensional BTZ black hole. Gen Relativ Gravit 44, 2865–2872 (2012). https://doi.org/10.1007/s10714-012-1426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1426-4

Keywords

Navigation