Skip to main content
Log in

On the evolution equations for ideal magnetohydrodynamics in curved spacetime

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We examine the problem of the construction of a first order symmetric hyperbolic evolution system for the Einstein-Maxwell-Euler system. Our analysis is based on a 1 + 3 tetrad formalism which makes use of the components of the Weyl tensor as one of the unknowns. In order to ensure the symmetric hyperbolicity of the evolution equations implied by the Bianchi identity, we introduce a tensor of rank 3 corresponding to the covariant derivative of the Faraday tensor. Our analysis includes the case of a perfect fluid with infinite conductivity (ideal magnetohydrodynamics) as a particular subcase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreiss H.-O., Lorenz J.: Stability for time-dependent differential equations. Acta Numerica 7, 203 (1998)

    Article  MathSciNet  Google Scholar 

  2. Friedrich H., Rendall A.D.: The Cauchy problem for the Einstein equations. Lect. Notes. Phys. 540, 127 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. Friedrich H.: Evolution equations for gravitating ideal fluid bodies in general relativity. Phys. Rev. D 57, 2317 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  4. Friedrich H.: Hyperbolic reductions for Einstein’s equations. Class. Quantum Gravit. 13, 1451 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Reula O.: Hyperbolic methods for Einstein’s equations. Living Rev. Rel. 3, 1 (1998)

    MathSciNet  Google Scholar 

  6. Friedrich H.: On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations. J. Differ. geom. 34, 275 (1991)

    MathSciNet  MATH  Google Scholar 

  7. van Ellis G.F.R., Elst H.: Cosmological models: Cargese lectures 1998. NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 541, 1 (1998)

    Google Scholar 

  8. Choquet-Bruhat Y.: C. R. Acad. Sci. Paris 261, 354 (1965)

    Google Scholar 

  9. Choquet-Bruhat Y.: General Relativity and the Einstein equations. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  10. Choquet-Bruhat Y., Friedrich H.: Motion of isolated bodies. Class. Quantum Gravit. 23, 5941 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Reula O.: Exponential decay for small nonlinear perturbations of expanding flat homogeneous cosmologies. Phys. Rev. D 60, 083507 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  12. Alho, A., Mena, F.C., Valiente Kroon, J.A.: The Einstein-Friedrich-nonlinear scalar field system and the stability of scalar field cosmologies (2010). arXiv:1006.3778

  13. van Putten M.H.P.M.: Maxwell’s equations in divergence form for general media with applications to MHD. Commun. Math. Phys. 141, 63 (1991)

    Article  MATH  ADS  Google Scholar 

  14. Friedrichs K.O.: On the laws of relativistic electro-magneto-fluid dynamics. Commun. Pure Appl. Math. 28, 749 (1974)

    MathSciNet  ADS  Google Scholar 

  15. Renardy M.: Well-Posedness of the hydrostatic MHD equations. J. Math. Fluid Mech. 2, 355 (2011)

    Google Scholar 

  16. van Putten M.H.P.M.: Uniqueness in MHD in divergence form: Right nullvectors and well-posedness. J. Math. Phys. 43, 6195 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Zenginoglu, A.: Ideal Magnetohydrodynamics in Curved Spacetime. Master thesis, University of Vienna (2003)

  18. Choquet-Bruhat Y., York J.W.: Constraints and evolution in cosmology. Lect. Notes Phys. 592, 29 (2002)

    Article  ADS  Google Scholar 

  19. Baumgarte T.W., Shapiro S.L.: General relativistic magnetohydrodynamics for the numerical construction of dynamical spacetimes. Astrophys. J. 585, 921 (2003)

    Article  ADS  Google Scholar 

  20. Shibata M., Sekiguchi Y.: Magnetohydrodynamics in full general relativity: formulations and tests. Phys. Rev. D 72, 044014 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  21. Etienne Z.B., Liu Y.T., Shapiro S.L.: Relativistic magnetohydrodynamics in dynamical spacetimes: a new AMR implementation. Phys. Rev. D 82, 084031 (2010)

    Article  ADS  Google Scholar 

  22. Font, J.A.: Numerical hydrodynamics and Magnetohydrodynamics in general relativity. Living Rev. Rel. 11(7) (2008)

  23. Alcubierre M.: Introduction to 3 + 1 Numerical Relativity. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  24. Gundlach C., Martín-García J.M.: Hyperbolicity of second-order in space systems of evolution equations. Class. Quantum Gravit. 23, S387 (2006)

    Article  MATH  ADS  Google Scholar 

  25. Rendall A.D.: Partial Differential Equations in General Relativity. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  26. Friedrich H., Nagy G.: The initial boundary value problem for Einstein’s vacuum field equation. Commun. Math. Phys. 201, 619 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Barrow J.D., Maartens R., Tsagas C.G.: Cosmology with inhomogeneous magnetic fields. Phys. Rep. 449, 131 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. Tsagas C.G.: Electromagnetic fields in curved spacetimes. Class. Quantum Gravit. 22, 393 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Palenzuela C., Garrett D., Lehner L., Liebling S.: Magnetospheres of black hole systems in force-free plasma. Phys. Rev. D 82, 044045 (2010)

    Article  ADS  Google Scholar 

  30. Palenzuela C., Lehner L., Yoshida S.: Understanding possible electromagnetic cunterparts to loud gravitational wave events. Phys. Rev. D 81, 084007 (2010)

    Article  ADS  Google Scholar 

  31. Palenzuela C., Anderson M., Lehner L., Liebling S., Nielsen D.: Binary black hole effects on electromagnetic fields. Phys. Rev. Lett. 103, 0801101 (2009)

    Article  Google Scholar 

  32. Mösta P., Palenzuela C., Rezzolla L., Lehner L., Yoshida S., Pollney D.: Vacuum electromagnetic counterparts of binary black hole mergers. Phys. Rev. D 81(6), 064017 (2010)

    Article  ADS  Google Scholar 

  33. Giacommazo B., Rezzolla L.: WhiskeyMHD: a new numerical code for general relativistic MHD. Class. Quantum Gravit. 24, S235 (2007)

    Article  ADS  Google Scholar 

  34. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman, San Francisco, CA (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Pugliese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugliese, D., Valiente Kroon, J.A. On the evolution equations for ideal magnetohydrodynamics in curved spacetime. Gen Relativ Gravit 44, 2785–2810 (2012). https://doi.org/10.1007/s10714-012-1424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1424-6

Keywords

Navigation