Skip to main content
Log in

Hybrid helicity and magneto-vorticity flux conservation in superdense npe-plasma

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, it is shown that the magnetic helicity dissipation per unit volume, coupled with the longitudinal conductivity, causes enhancement of the kinematic rotation of the electric (and magnetic) lines if the npe-plasma vorticity vector aligns with the electric (or the magnetic) field. In the case of a rigidly rotating npe-plasma under the influence of a strong magnetic field, the electric lines are rotating faster than the magnetic lines. It is deduced that the orthogonality of the electric and magnetic fields is an essential condition for the conduction current to remain finite in the limit of infinite electric conductivity of the npe-plasma. In this case, the magnetic field is not frozen into the npe-plasma, but the magnetic flux in the magnetic tube is conserved. The hybrid helicity is conserved if the “magneto-vorticity” vector is tangent to the level surfaces of constant entropy per baryon. The “magneto-vorticity” lines are rotating on the level surfaces of constant entropy per baryon due to the electromagnetic energy flow in the direction of the npe-plasma vorticity and the chemical potential variation locked with the kinematic rotation of the npe-plasma flow lines. In the case of an isentropic npe-plasma flow, there exists a family of timelike 2-surfaces spanned by the “magneto-vorticity” lines and the npe-plasma flow lines. In this case, the electric field is normal to such a family of timelike 2-surfaces. Maxwell like equations satisfied by “magneto-vorticity” bivector field are solved in axially symmetric stationary case. It is shown that the npe-plasma is in differential rotation in such a way that its each plasma shell (i.e., plasma surface spanned by “magneto-vorticity” lines) is rotating differentially without continually winding up “magneto-vorticity” lines frozen into the npe-plasma. It is also found that gravitational isorotation and Ferraro’s law of isorotation are intimately connected to each other because of coexistence of both the plasma vorticity and the magnetic field due to interaction between the electromagnetic field and npe-plasma flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkl, R., Stergioulas, N., Müller, E.: arxiv.gr-qc/10115475 (2010)

  2. Ciolfi, R., Ferrari, V., Gualtieri, L., Pons, J.A.: arxiv.astro-ph/09030556 (2010)

  3. Beskin V.S.: MHD Flows in Compact Astrophysical Objects. Springer, Berlin (2010)

    Book  Google Scholar 

  4. Gourgoulhon E., Marakis C., Uryu K., Eriguchi Y.: Phys. Rev. D 83, 104007 (2011)

    Article  ADS  Google Scholar 

  5. Ioka K., Sasaki M.: Astrophys. J. 600, 297 (2004)

    Article  ADS  Google Scholar 

  6. Ioka K., Sasaki M.: Phys. Rev. D 67, 124026 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. Oron A.: Phys. Rev. D 66, 023006 (2002)

    Article  ADS  Google Scholar 

  8. Rezzolla L., Ahmedov B.J., Miller J.C.: Mon. Not. R. Astron. Soc. 322, 723 (2001)

    Article  ADS  Google Scholar 

  9. Amundsen L., Østgaard E.: Nucl. Phys. A 437, 487 (1985a)

    ADS  Google Scholar 

  10. Amundsen L., Østgaard E.: Nucl. Phys. A 442, 163 (1985b)

    Article  ADS  Google Scholar 

  11. Yakovlev D.G., Shalybkov D.A.: Sov. Astron. Lett. 16(2), 86 (1990)

    ADS  Google Scholar 

  12. Shapiro S.L., Teukolsky S.A.: Black Holes, White Dwarfs and Neutron Stars. Wiley, New York (1983)

    Book  Google Scholar 

  13. Bekenstein J.D., Oron E.: Phys. Rev D 18, 1809 (1978)

    Article  ADS  Google Scholar 

  14. Haensel P., Urpin V.A., Yakovlev D.G.: Astron. Astrophys. 229, 133 (1990)

    ADS  Google Scholar 

  15. Sang Y., Chanmugam G.: Astrophys. J. 323, L61 (1987)

    Article  ADS  Google Scholar 

  16. Hoyos J., Reisenegger A., Valdivia J.A.: Astron. Astrophys. 487, 789 (2008)

    Article  MATH  ADS  Google Scholar 

  17. Reisenegger A., Benguria R., Priefo J.P., Araya P.A., Lai D.: Astron. Astrophys. 472, 233 (2007)

    Article  ADS  Google Scholar 

  18. Reisenegger A., Goldreich P.: Astrophys. J. 323, 161 (1992)

    Google Scholar 

  19. Goldreich P., Reisenegger A.: Astrophys. J. 395, 250 (1992)

    Article  ADS  Google Scholar 

  20. Arras P., Cumming A., Thompson C.: Astrophys. J. 608, L49 (2004)

    Article  ADS  Google Scholar 

  21. Thompson C., Duncan R.C.: Astrophys. J. 473, 322 (1996)

    Article  ADS  Google Scholar 

  22. Baym G., Pethick C., Pines D.: Nature 224, 673 (1969)

    Article  ADS  Google Scholar 

  23. Baym G., Pethick C., Pines D.: Nature 224, 674 (1969)

    Article  ADS  Google Scholar 

  24. Carter, B.: In: Hazard, C., Mitton, S. (eds.) Active Glactic Nuclei. Cambridge University Press, London, p. 273 (1979)

  25. Carter, B.: In: DeWitt, C., DeWitt, B.S., (eds.) Blak Holes—Les Houches. Gordon and Breach, New York (1973)

  26. Bekenstein J.D.: Astrophys. J. 319, 207 (1987)

    Article  ADS  Google Scholar 

  27. Burman R.R.: Aust. J. Phys, 33, 611 (1980)

    ADS  Google Scholar 

  28. Østgaard E., Yakovlev D.G.: Nucl. Phys. A 540, 211 (1992)

    Article  ADS  Google Scholar 

  29. Lichnerowicz A.: Relativistic Hydrodynamics and Magnetohydrodynamics. Benjamin, New York (1967)

    MATH  Google Scholar 

  30. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  31. Reisenegger A.: Astrophys. J. 442, 749 (1995)

    Article  ADS  Google Scholar 

  32. Reisenegger A., Prieto J.P., Benguria R., Lai D., Araya P.A.: Astron. Astrophys. 472, 233 (2007)

    Article  ADS  Google Scholar 

  33. Landau L.D., Lifshitz E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1960)

    MATH  Google Scholar 

  34. Ellis, G.F.R.: In: Schatzmam, E. (ed.) Cargese Lectures in Physics, vol. 6. Gordon and Breach, New York (1973)

  35. Greenberg P.J.: J. Math. Anal. Appl. 30, 128 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tsamparlis M., Mason D.P.: J. Math. Phys. 24, 1577 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Carter B.: J. Math. Phys. 10, 70 (1969)

    Article  MATH  ADS  Google Scholar 

  38. Carter B.: Commun. Math. Phys. 17, 233 (1970)

    Article  MATH  ADS  Google Scholar 

  39. Bardeen, J.M.: In: DeWit, C., DeWitt, B.S. (eds.) Black Holes. Gordon and Breach, New York (1973)

  40. Novikov, I., Thorne, K.S.: In: DeWit, C., DeWitt, B.S. (eds.) Black Holes. Gordan and Breach, New York (1973)

  41. Raychaudhuri A.K.: Mon. Not. R. Astron. Soc. 189, 39 (1979)

    ADS  Google Scholar 

  42. Ostriker J.P., Gunn J.E.: Astrophys. J. 157, 1395 (1969)

    Article  ADS  Google Scholar 

  43. Bekenstein J.D., Oron E.: Phys. Rev. D 19, 2827 (1979)

    Article  ADS  Google Scholar 

  44. Glass E.N.: J. Math. Phys. 18, 708 (1977)

    Article  ADS  Google Scholar 

  45. Mason D.P.: Aust. J. Phys. 29, 413 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, G. Hybrid helicity and magneto-vorticity flux conservation in superdense npe-plasma. Gen Relativ Gravit 44, 2687–2709 (2012). https://doi.org/10.1007/s10714-012-1407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1407-7

Keywords

Navigation