Skip to main content

Fermi and electromagnetic mass

Abstract

Fermi’s analysis of the contribution of the electromagnetic field to the inertial mass of the classical electron within special relativity is brought to its logical conclusion, leading to the conservation of the total 4-momentum of the field plus mechanical mass system as seen by the sequence of inertial observers in terms of which the accelerated electron is momentarily at rest.

This is a preview of subscription content, access via your institution.

References

  1. Fermi E.: Nuovo Cim. 22, 199 (1921)

    Article  Google Scholar 

  2. Fermi E.: Nuovo Cim. 22, 176 (1921)

    Article  Google Scholar 

  3. Fermi, E.: Rend. Lincei, 31, 21–23, 51–52, 101–103 (1922)

    Google Scholar 

  4. Fermi E.: Phys. Z. 23, 340 (1922)

    Google Scholar 

  5. Fermi, E.: Rendi. Lincei 31, 184–187, 306–309 (1922)

    Google Scholar 

  6. Fermi E.: Nuovo Cim. 25, 159 (1923)

    Article  Google Scholar 

  7. Fermi, E.: Note e Memorie (Collected Papers), Accademia Nazionale dei Lincei and The University of Chicago Press, (Vol. 1, 1961, Vol. 2, 1965) [original Italian articles available at English translations of early articles in: Fermi and Astrophysics, Ruffini, R., Boccaletti, D (Eds.), World Scientific, Singapore (2012)] http://www.archive.org/details/collectedpapersn007155mbp

  8. Abraham, M.: Ann. Phys. (Leipzig) 10, 105 (1903)

    Google Scholar 

  9. Abraham M.: Phys. Z. 5, 576 (1904)

    Google Scholar 

  10. Lorentz, H.A.: The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, Dover, New York. (First Edition 1909, from lectures of 1906) (1952)

  11. Bini, D., Jantzen, R.T.: In: Gurzadyan, V., Ruffini, R. (Eds.) Proceedings of the Ninth ICRA Network Workshop on Fermi and Astrophysics, World Scientific, Singapore, (2003) [Nuovo Cim. vol. 117B, p. 983 (2002)] http://arXiv.org/abs/gr-qc/0202085

  12. Bini, D., Jantzen, R.T.: In: Ruffini, R., Boccaletti, D. (Eds.) Fermi and Astrophysics, World Scientific, Singapore (2012)

  13. Synge J.L.: Relativity, The General Theory. North Holland, Amsterdam (1960)

    MATH  Google Scholar 

  14. Ruffini R., Boccaletti D.: Fermi and Astrophysics. World Scientific, Singapore (2011)

    Google Scholar 

  15. Bini, D., Geralico, A., Jantzen, R.T., Ruffini, R.: On Fermi’s resolution of the 4/3 problem in the classical theory of the electron and its logical conclusion: hidden in plain sight. In: Fermi and Astrophysics, World Scientific, Singapore (2012)

  16. Poincaré H.: C. R. Acad. Sci. 140, 1504 (1905)

    MATH  Google Scholar 

  17. Poincaré, H.: Rend. Circ. Mat. Palermo 21, 129. [English translation by Schwartz, H.M.: Poincaré’s Rendiconti Paper on Relativity. Part I, II, III. Am. J. Phys. 39, 1287 (1971)] (1906)

  18. Poincaré H.: Am. J. Phys. 40, 862 (1972)

    Article  Google Scholar 

  19. Poincaré H.: Am. J. Phys. 40, 1282 (1972)

    Article  Google Scholar 

  20. von Laue M.: Das Relativitätsprinzip. Vieweg, Braunschweig (1911)

    MATH  Google Scholar 

  21. Born M.: Ann. Physik 30, 1 (1909)

    ADS  MATH  Article  Google Scholar 

  22. Born M.: Phys. Z. 11, 233 (1910)

    Google Scholar 

  23. Misner C.W., Wheeler J.A., Thorne K.S.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  24. Aharoni, J.: The Special Theory of Relativity, Oxford University Press, Oxford [First Edition: 1959, Second Edition: 1965, see Chapter 5]

  25. Rohrlich F.: Am. J. Phys. 28, 639 (1960)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  26. Kwal B.: J. Phys. Radium 10, 103 (1949)

    MathSciNet  Article  Google Scholar 

  27. Jackson, J.: Classical Electrodynamics, Wiley, New York, [Second Edition: 1975, Third Edition: 1999; see respectively Chapters 17, 16]

  28. Nodvik J.S.: Ann. Phys. 28, 225 (1964)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  29. Kiessling M.: Phys. Lett. A 258, 197 (1999)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  30. Appel W., Kiessling M.: Ann. Phys. 289, 24 (2001)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  31. Spohn H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)

    MATH  Book  Google Scholar 

  32. Rohrlich F.: Classical Charged Particles. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  33. Rohrlich, F.: Classical Charged Particles, (updated 3rd Edn) World Scientific, Singapore (2007)

  34. Yaghjian, A.D.: Relativistic Dynamics of a Charged Sphere: Updating the Lorentz-Abraham Model, Springer, Berlin (Second Edition 2006) (1992)

  35. Yaghjian A.D.: Phys. Rev. E 78, 046606 (2008)

    ADS  Article  Google Scholar 

  36. Christodoulou D., Ruffini R.: Phys. Rev. D 4, 3552 (1971)

    ADS  Article  Google Scholar 

  37. Kolbenstvedt H.: Phys. Lett. A 234, 319 (1997)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  38. Boughn, S., Rothman, T.: Hasenöhrl and the Equivalence of Mass and Energy (2011) e-print: http://arxiv.org/abs/1108.2250

  39. Fermi, E., Pontremoli, A.: Rend. Lincei 32, 162 (1923) [English translation in [14]

  40. Schwinger J.: Found. Phys. 13, 373 (1983)

    MathSciNet  ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Jantzen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jantzen, R.T., Ruffini, R. Fermi and electromagnetic mass. Gen Relativ Gravit 44, 2063–2076 (2012). https://doi.org/10.1007/s10714-012-1381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1381-0

Keywords

  • Special relativity
  • Electromagnetic mass
  • Conservation laws