Skip to main content
Log in

An analytical study on the multi-critical behaviour and related bifurcation phenomena for relativistic black hole accretion

General Relativity and Gravitation Aims and scope Submit manuscript

Cite this article

Abstract

We apply the theory of algebraic polynomials to analytically study the transonic properties of general relativistic hydrodynamic axisymmetric accretion onto non-rotating astrophysical black holes. For such accretion phenomena, the conserved specific energy of the flow, which turns out to be one of the two first integrals of motion in the system studied, can be expressed as a 8th degree polynomial of the critical point of the flow configuration. We then construct the corresponding Sturm’s chain algorithm to calculate the number of real roots lying within the astrophysically relevant domain of \({\mathbb{R}}\). This allows, for the first time in literature, to analytically find out the maximum number of physically acceptable solution an accretion flow with certain geometric configuration, space-time metric, and equation of state can have, and thus to investigate its multi-critical properties completely analytically, for accretion flow in which the location of the critical points can not be computed without taking recourse to the numerical scheme. This work can further be generalized to analytically calculate the maximal number of equilibrium points certain autonomous dynamical system can have in general. We also demonstrate how the transition from a mono-critical to multi-critical (or vice versa) flow configuration can be realized through the saddle-centre bifurcation phenomena using certain techniques of the catastrophe theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Liang E.P.T., Thomson K.A.: ApJ. 240, 271 (1980)

    Article  ADS  Google Scholar 

  2. Ray A.K., Bhattacharjee J.K.: Phys. Rev. E 66, 066303 (2002)

    Article  ADS  Google Scholar 

  3. Afshordi N., Paczyński B.: ApJ. 592, 354 (2003)

    Article  ADS  Google Scholar 

  4. Ray A.K.: MNRAS 344, 83 (2003)

    Article  ADS  Google Scholar 

  5. Ray A.K.: MNRAS 344, 1085 (2003)

    Article  ADS  Google Scholar 

  6. Ray, A.K., Bhattacharjee, J.K.: A dynamical systems approach to a thin accretion disc and its time-dependent behaviour on large length scales. Eprint arXiv:astro-ph/0511018v1 (2005)

  7. Ray A.K., Bhattacharjee J.K.: Astrophys. J. 627, 368 (2005)

    Article  ADS  Google Scholar 

  8. Chaudhury S., Ray A.K., Das T.K.: MNRAS 373, 146 (2006)

    Article  ADS  Google Scholar 

  9. Ray, A.K., Bhattacharjee, J.K.: Indian J. Phys. 80, 1123 (2006). Eprint arXiv:astro-ph/0703301

    Google Scholar 

  10. Ray A.K., Bhattacharjee J.K.: Class. Quantum Gravity 24, 1479 (2007)

    Article  ADS  MATH  Google Scholar 

  11. Bhattacharjee J.K., Ray A.K.: ApJ. 668, 409 (2007)

    Article  ADS  Google Scholar 

  12. Goswami S., Khan S.N., Ray A.K., Das T.K.: MNRAS 378, 1407 (2007)

    Article  ADS  Google Scholar 

  13. Bhattacharjee, J.K., Bhattacharya, A., Das, T.K., Ray, A.K.: MNRAS 398, 841 (2009). Also at arXiv:0812.4793v1 [astro-ph]

  14. Abramowicz M.A., Zurek W.H.: ApJ. 246, 314 (1981)

    Article  ADS  Google Scholar 

  15. Muchotrzeb B., Paczynski B.: Acta Actron. 32, 1 (1982)

    ADS  Google Scholar 

  16. Muchotrzeb B.: Acta Astron. 33, 79 (1983)

    ADS  Google Scholar 

  17. Fukue J.: PASJ 35, 355 (1983)

    ADS  Google Scholar 

  18. Fukue J.: PASJ 39, 309 (1987)

    ADS  Google Scholar 

  19. Fukue J.: PASJ 56, 681 (2004)

    ADS  Google Scholar 

  20. Fukue J.: PASJ 56, 959 (2004)

    ADS  Google Scholar 

  21. Lu J.F.: A & A 148, 176 (1985)

    ADS  Google Scholar 

  22. Lu F.: Gen. Relativ. Gravit. 18, 45L (1986)

    Article  ADS  Google Scholar 

  23. Muchotrzeb-Czerny B.: Acta Astronomica 36, 1 (1986)

    ADS  Google Scholar 

  24. Abramowicz M.A., Kato S.: ApJ. 336, 304 (1989)

    Article  ADS  Google Scholar 

  25. Abramowicz M.A., Chakrabarti S.K.: ApJ. 350, 281 (1990)

    Article  ADS  Google Scholar 

  26. Kafatos M., Yang R.X.: MNRAS 268, 925 (1994)

    ADS  Google Scholar 

  27. Yang R.X., Kafatos M.: A & A 295, 238 (1995)

    ADS  Google Scholar 

  28. Caditz D.M., Tsuruta S.: ApJ. 501, 242 (1998)

    Article  ADS  Google Scholar 

  29. Das T.K.: ApJ. 577, 880 (2002)

    Article  ADS  Google Scholar 

  30. Barai P., Das T.K., Wiita P.J.: ApJ. 613, L49 (2004)

    Article  ADS  Google Scholar 

  31. Abraham H., Bilić N., Das T.K.: Class. Quantum Gravity 23, 2371 (2006)

    Article  MATH  Google Scholar 

  32. Das T.K., Bilić N., Dasgupta S.: JCAP 06, 009 (2007)

    ADS  Google Scholar 

  33. Das T.K., Czerny B.: New Astron. 17, 254 (2012)

    Article  ADS  Google Scholar 

  34. Nag S., Acharya S., Ray A.K., Das T.K.: New Astron. 17, 285 (2012)

    Article  ADS  Google Scholar 

  35. Chakrabarti S.K.: ApJ. 347, 365 (1989)

    Article  ADS  Google Scholar 

  36. Das T.K., Pendharkar J.K., Mitra S.: ApJ. 592, 1078 (2003)

    Article  ADS  Google Scholar 

  37. Illarionov A., Sunyaev R.A.: A & A 39, 205 (1975)

    Google Scholar 

  38. Liang E.P.T., Nolan P.L.: Space. Sci. Rev. 38, 353 (1984)

    Article  ADS  Google Scholar 

  39. Bisikalo, A.A., Boyarchuk, V.M., Chechetkin, V.M., Kuznetsov, O.A., Molteni, D.: MNRAS 300, 39 (1998)

  40. Illarionov A.F.: Soviet Astron. 31, 618 (1988)

    ADS  Google Scholar 

  41. Ho, L.C.: In: Chakrabarti, S.K. (ed.) Observational Evidence for Black Holes in the Universe, p. 153 Kluwer, Dordrecht (1999)

  42. Igumenshchev I.V., Abramowicz M.A.: MNRAS 303, 309 (1999)

    Article  ADS  Google Scholar 

  43. Matsumoto R., Kato S., Fukue J., Okazaki A.T.: PASJ 36, 71 (1984)

    ADS  Google Scholar 

  44. Paczyński B.: Nature 327, 303 (1987)

    Article  ADS  Google Scholar 

  45. Abramowicz M.A., Czerny B., Lasota J.P., Szuszkiewicz E.: ApJ. 332, 646 (1988)

    Article  ADS  Google Scholar 

  46. Chen X., Taam R.: ApJ. 412, 254 (1993)

    Article  ADS  Google Scholar 

  47. Artemova I.V., Björnsson G., Novikov I.D.: ApJ. 461, 565 (1996)

    Article  ADS  Google Scholar 

  48. Narayan R., Kato S., Honma F.: ApJ. 476, 49 (1997)

    Article  ADS  Google Scholar 

  49. Wiita, P.J. In: Iyer, B.R., Bhawal, B. (eds.) Black Holes, Gravitational Radiation and the Universe, p. 249, Kluwer, Dordrecht (1999)

  50. Hawley J.F., Krolik J.H.: ApJ. 548, 348 (2001)

    Article  ADS  Google Scholar 

  51. Armitage P.J., Reynolds C.S., Chiang J.: ApJ. 648, 868 (2001)

    Article  ADS  Google Scholar 

  52. Abramowicz M.A., Lanza A., Percival M.J.: ApJ. 479, 179 (1997)

    Article  ADS  Google Scholar 

  53. Manmoto T.: ApJ. 534, 734 (2000)

    Article  ADS  Google Scholar 

  54. Stark, H.: An Introduction to Number Theory. MIT Press, 1978; ISBN 0-262-69060-8

  55. Bochnak J., Coste M., Roy M.F.: Real Algebraic Geometry. Springer, Berlin (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankhasubhra Nag.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agarwal, S., Das, T.K., Dey, R. et al. An analytical study on the multi-critical behaviour and related bifurcation phenomena for relativistic black hole accretion. Gen Relativ Gravit 44, 1637–1655 (2012). https://doi.org/10.1007/s10714-012-1358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1358-z

Keywords

Navigation